forked from ray-project/ray
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[RLlib] OPE (off policy estimator) API. (ray-project#24384)
- Loading branch information
Showing
9 changed files
with
183 additions
and
124 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,41 @@ | ||
from ray.rllib.offline.off_policy_estimator import OffPolicyEstimator, OffPolicyEstimate | ||
from ray.rllib.utils.annotations import override | ||
from ray.rllib.utils.typing import SampleBatchType | ||
|
||
|
||
class ImportanceSampling(OffPolicyEstimator): | ||
"""The step-wise IS estimator. | ||
Step-wise IS estimator described in https://arxiv.org/pdf/1511.03722.pdf""" | ||
|
||
@override(OffPolicyEstimator) | ||
def estimate(self, batch: SampleBatchType) -> OffPolicyEstimate: | ||
self.check_can_estimate_for(batch) | ||
|
||
rewards, old_prob = batch["rewards"], batch["action_prob"] | ||
new_prob = self.action_log_likelihood(batch) | ||
|
||
# calculate importance ratios | ||
p = [] | ||
for t in range(batch.count): | ||
if t == 0: | ||
pt_prev = 1.0 | ||
else: | ||
pt_prev = p[t - 1] | ||
p.append(pt_prev * new_prob[t] / old_prob[t]) | ||
|
||
# calculate stepwise IS estimate | ||
V_prev, V_step_IS = 0.0, 0.0 | ||
for t in range(batch.count): | ||
V_prev += rewards[t] * self.gamma ** t | ||
V_step_IS += p[t] * rewards[t] * self.gamma ** t | ||
|
||
estimation = OffPolicyEstimate( | ||
"importance_sampling", | ||
{ | ||
"V_prev": V_prev, | ||
"V_step_IS": V_step_IS, | ||
"V_gain_est": V_step_IS / max(1e-8, V_prev), | ||
}, | ||
) | ||
return estimation |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
from ray.rllib.offline.off_policy_estimator import OffPolicyEstimator, OffPolicyEstimate | ||
from ray.rllib.policy import Policy | ||
from ray.rllib.utils.annotations import override | ||
from ray.rllib.utils.typing import SampleBatchType | ||
|
||
|
||
class WeightedImportanceSampling(OffPolicyEstimator): | ||
"""The weighted step-wise IS estimator. | ||
Step-wise WIS estimator in https://arxiv.org/pdf/1511.03722.pdf""" | ||
|
||
def __init__(self, policy: Policy, gamma: float): | ||
super().__init__(policy, gamma) | ||
self.filter_values = [] | ||
self.filter_counts = [] | ||
|
||
@override(OffPolicyEstimator) | ||
def estimate(self, batch: SampleBatchType) -> OffPolicyEstimate: | ||
self.check_can_estimate_for(batch) | ||
|
||
rewards, old_prob = batch["rewards"], batch["action_prob"] | ||
new_prob = self.action_log_likelihood(batch) | ||
|
||
# calculate importance ratios | ||
p = [] | ||
for t in range(batch.count): | ||
if t == 0: | ||
pt_prev = 1.0 | ||
else: | ||
pt_prev = p[t - 1] | ||
p.append(pt_prev * new_prob[t] / old_prob[t]) | ||
for t, v in enumerate(p): | ||
if t >= len(self.filter_values): | ||
self.filter_values.append(v) | ||
self.filter_counts.append(1.0) | ||
else: | ||
self.filter_values[t] += v | ||
self.filter_counts[t] += 1.0 | ||
|
||
# calculate stepwise weighted IS estimate | ||
V_prev, V_step_WIS = 0.0, 0.0 | ||
for t in range(batch.count): | ||
V_prev += rewards[t] * self.gamma ** t | ||
w_t = self.filter_values[t] / self.filter_counts[t] | ||
V_step_WIS += p[t] / w_t * rewards[t] * self.gamma ** t | ||
|
||
estimation = OffPolicyEstimate( | ||
"weighted_importance_sampling", | ||
{ | ||
"V_prev": V_prev, | ||
"V_step_WIS": V_step_WIS, | ||
"V_gain_est": V_step_WIS / max(1e-8, V_prev), | ||
}, | ||
) | ||
return estimation |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,41 +1,10 @@ | ||
from ray.rllib.offline.off_policy_estimator import OffPolicyEstimator, OffPolicyEstimate | ||
from ray.rllib.utils.annotations import override | ||
from ray.rllib.utils.typing import SampleBatchType | ||
from ray.rllib.offline.estimators.importance_sampling import ImportanceSampling | ||
from ray.rllib.utils.deprecation import Deprecated | ||
|
||
|
||
class ImportanceSamplingEstimator(OffPolicyEstimator): | ||
"""The step-wise IS estimator. | ||
Step-wise IS estimator described in https://arxiv.org/pdf/1511.03722.pdf""" | ||
|
||
@override(OffPolicyEstimator) | ||
def estimate(self, batch: SampleBatchType) -> OffPolicyEstimate: | ||
self.check_can_estimate_for(batch) | ||
|
||
rewards, old_prob = batch["rewards"], batch["action_prob"] | ||
new_prob = self.action_log_likelihood(batch) | ||
|
||
# calculate importance ratios | ||
p = [] | ||
for t in range(batch.count): | ||
if t == 0: | ||
pt_prev = 1.0 | ||
else: | ||
pt_prev = p[t - 1] | ||
p.append(pt_prev * new_prob[t] / old_prob[t]) | ||
|
||
# calculate stepwise IS estimate | ||
V_prev, V_step_IS = 0.0, 0.0 | ||
for t in range(batch.count): | ||
V_prev += rewards[t] * self.gamma ** t | ||
V_step_IS += p[t] * rewards[t] * self.gamma ** t | ||
|
||
estimation = OffPolicyEstimate( | ||
"is", | ||
{ | ||
"V_prev": V_prev, | ||
"V_step_IS": V_step_IS, | ||
"V_gain_est": V_step_IS / max(1e-8, V_prev), | ||
}, | ||
) | ||
return estimation | ||
@Deprecated( | ||
new="ray.rllib.offline.estimators.importance_sampling::ImportanceSampling", | ||
error=False, | ||
) | ||
class ImportanceSamplingEstimator(ImportanceSampling): | ||
pass |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,55 +1,13 @@ | ||
from ray.rllib.offline.off_policy_estimator import OffPolicyEstimator, OffPolicyEstimate | ||
from ray.rllib.policy import Policy | ||
from ray.rllib.utils.annotations import override | ||
from ray.rllib.utils.typing import SampleBatchType | ||
|
||
|
||
class WeightedImportanceSamplingEstimator(OffPolicyEstimator): | ||
"""The weighted step-wise IS estimator. | ||
Step-wise WIS estimator in https://arxiv.org/pdf/1511.03722.pdf""" | ||
|
||
def __init__(self, policy: Policy, gamma: float): | ||
super().__init__(policy, gamma) | ||
self.filter_values = [] | ||
self.filter_counts = [] | ||
|
||
@override(OffPolicyEstimator) | ||
def estimate(self, batch: SampleBatchType) -> OffPolicyEstimate: | ||
self.check_can_estimate_for(batch) | ||
|
||
rewards, old_prob = batch["rewards"], batch["action_prob"] | ||
new_prob = self.action_log_likelihood(batch) | ||
|
||
# calculate importance ratios | ||
p = [] | ||
for t in range(batch.count): | ||
if t == 0: | ||
pt_prev = 1.0 | ||
else: | ||
pt_prev = p[t - 1] | ||
p.append(pt_prev * new_prob[t] / old_prob[t]) | ||
for t, v in enumerate(p): | ||
if t >= len(self.filter_values): | ||
self.filter_values.append(v) | ||
self.filter_counts.append(1.0) | ||
else: | ||
self.filter_values[t] += v | ||
self.filter_counts[t] += 1.0 | ||
|
||
# calculate stepwise weighted IS estimate | ||
V_prev, V_step_WIS = 0.0, 0.0 | ||
for t in range(batch.count): | ||
V_prev += rewards[t] * self.gamma ** t | ||
w_t = self.filter_values[t] / self.filter_counts[t] | ||
V_step_WIS += p[t] / w_t * rewards[t] * self.gamma ** t | ||
|
||
estimation = OffPolicyEstimate( | ||
"wis", | ||
{ | ||
"V_prev": V_prev, | ||
"V_step_WIS": V_step_WIS, | ||
"V_gain_est": V_step_WIS / max(1e-8, V_prev), | ||
}, | ||
) | ||
return estimation | ||
from ray.rllib.offline.estimators.weighted_importance_sampling import ( | ||
WeightedImportanceSampling, | ||
) | ||
from ray.rllib.utils.deprecation import Deprecated | ||
|
||
|
||
@Deprecated( | ||
new="ray.rllib.offline.estimators.weighted_importance_sampling::" | ||
"WeightedImportanceSampling", | ||
error=False, | ||
) | ||
class WeightedImportanceSamplingEstimator(WeightedImportanceSampling): | ||
pass |