Skip to content

Commit

Permalink
# Add whole word mask support for lm fine-tune (huggingface#7925)
Browse files Browse the repository at this point in the history
* ADD: add whole word mask proxy for both eng and chinese

* MOD: adjust format

* MOD: reformat code

* MOD: update import

* MOD: fix bug

* MOD: add import

* MOD: fix bug

* MOD: decouple code and update readme

* MOD: reformat code

* Update examples/language-modeling/README.md

Co-authored-by: Sylvain Gugger <[email protected]>

* Update examples/language-modeling/README.md

Co-authored-by: Sylvain Gugger <[email protected]>

* Update examples/language-modeling/run_language_modeling.py

Co-authored-by: Sylvain Gugger <[email protected]>

* Update examples/language-modeling/run_language_modeling.py

Co-authored-by: Sylvain Gugger <[email protected]>

* Update examples/language-modeling/run_language_modeling.py

Co-authored-by: Sylvain Gugger <[email protected]>

* Update examples/language-modeling/run_language_modeling.py

Co-authored-by: Sylvain Gugger <[email protected]>

* change wwm to whole_word_mask

* reformat code

* reformat

* format

* Code quality

* ADD: update chinese ref readme

* MOD: small changes

* MOD: small changes2

* update readme

Co-authored-by: Sylvain Gugger <[email protected]>
Co-authored-by: Sylvain Gugger <[email protected]>
  • Loading branch information
3 people authored Oct 22, 2020
1 parent 64b4d25 commit a16e568
Show file tree
Hide file tree
Showing 8 changed files with 394 additions and 7 deletions.
52 changes: 51 additions & 1 deletion examples/language-modeling/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -45,19 +45,69 @@ slightly slower (over-fitting takes more epochs).

We use the `--mlm` flag so that the script may change its loss function.

If using whole-word masking, use both the`--mlm` and `--wwm` flags.

```bash
export TRAIN_FILE=/path/to/dataset/wiki.train.raw
export TEST_FILE=/path/to/dataset/wiki.test.raw

python run_language_modeling.py \
--output_dir=output \
--model_type=roberta \
--model_name_or_path=roberta-base \
--do_train \
--train_data_file=$TRAIN_FILE \
--do_eval \
--eval_data_file=$TEST_FILE \
--mlm \
--wwm
```

For Chinese models, it's same with English model with only --mlm`. If using whole-word masking, we need to generate a reference files, case it's char level.

**Q :** Why ref file ?

**A :** Suppose we have a Chinese sentence like : `我喜欢你` The original Chinese-BERT will tokenize it as `['我','喜','欢','你']` in char level.
Actually, `喜欢` is a whole word. For whole word mask proxy, We need res like `['我','喜','##欢','你']`.
So we need a ref file to tell model which pos of BERT original token should be added `##`.

**Q :** Why LTP ?

**A :** Cause the best known Chinese WWM BERT is [Chinese-BERT-wwm](https://github.com/ymcui/Chinese-BERT-wwm) by HIT. It works well on so many Chines Task like CLUE (Chinese GLUE).
They use LTP, so if we want to fine-tune their model, we need LTP.

```bash
export TRAIN_FILE=/path/to/dataset/wiki.train.raw
export LTP_RESOURCE=/path/to/ltp/tokenizer
export BERT_RESOURCE=/path/to/bert/tokenizer
export SAVE_PATH=/path/to/data/ref.txt

python chinese_ref.py \
--file_name=$TRAIN_FILE \
--ltp=$LTP_RESOURCE
--bert=$BERT_RESOURCE \
--save_path=$SAVE_PATH
```
Now Chinese Ref is only supported by `LineByLineWithRefDataset` Class, so we need add `line_by_line` flag:


```bash
export TRAIN_FILE=/path/to/dataset/wiki.train.raw
export TEST_FILE=/path/to/dataset/wiki.test.raw
export REF_FILE=/path/to/ref.txt

python run_language_modeling.py \
--output_dir=output \
--model_type=roberta \
--model_name_or_path=roberta-base \
--do_train \
--train_data_file=$TRAIN_FILE \
--chinese_ref_file=$REF_FILE \
--do_eval \
--eval_data_file=$TEST_FILE \
--mlm
--mlm \
--line_by_line \
--wwm
```

### XLNet and permutation language modeling
Expand Down
147 changes: 147 additions & 0 deletions examples/language-modeling/chinese_ref.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@
import argparse
import json
from typing import List

from ltp import LTP
from transformers.tokenization_bert import BertTokenizer


def _is_chinese_char(cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True

return False


def is_chinese(word: str):
# word like '180' or '身高' or '神'
for char in word:
char = ord(char)
if not _is_chinese_char(char):
return 0
return 1


def get_chinese_word(tokens: List[str]):
word_set = set()

for token in tokens:
chinese_word = len(token) > 1 and is_chinese(token)
if chinese_word:
word_set.add(token)
word_list = list(word_set)
return word_list


def add_sub_symbol(bert_tokens: List[str], chinese_word_set: set()):
if not chinese_word_set:
return bert_tokens
max_word_len = max([len(w) for w in chinese_word_set])

bert_word = bert_tokens
start, end = 0, len(bert_word)
while start < end:
single_word = True
if is_chinese(bert_word[start]):
l = min(end - start, max_word_len)
for i in range(l, 1, -1):
whole_word = "".join(bert_word[start : start + i])
if whole_word in chinese_word_set:
for j in range(start + 1, start + i):
bert_word[j] = "##" + bert_word[j]
start = start + i
single_word = False
break
if single_word:
start += 1
return bert_word


def prepare_ref(lines: List[str], ltp_tokenizer: LTP, bert_tokenizer: BertTokenizer):
ltp_res = []

for i in range(0, len(lines), 100):
res = ltp_tokenizer.seg(lines[i : i + 100])[0]
res = [get_chinese_word(r) for r in res]
ltp_res.extend(res)
assert len(ltp_res) == len(lines)

bert_res = []
for i in range(0, len(lines), 100):
res = bert_tokenizer(lines[i : i + 100], add_special_tokens=True, truncation=True, max_length=512)
bert_res.extend(res["input_ids"])
assert len(bert_res) == len(lines)

ref_ids = []
for input_ids, chinese_word in zip(bert_res, ltp_res):

input_tokens = []
for id in input_ids:
token = bert_tokenizer._convert_id_to_token(id)
input_tokens.append(token)
input_tokens = add_sub_symbol(input_tokens, chinese_word)
ref_id = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(input_tokens):
if token[:2] == "##":
clean_token = token[2:]
# save chinese tokens' pos
if len(clean_token) == 1 and _is_chinese_char(ord(clean_token)):
ref_id.append(i)
ref_ids.append(ref_id)

assert len(ref_ids) == len(bert_res)

return ref_ids


def main(args):
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name, "r", encoding="utf-8") as f:
data = f.readlines()

ltp_tokenizer = LTP(args.ltp) # faster in GPU device
bert_tokenizer = BertTokenizer.from_pretrained(args.bert)

ref_ids = prepare_ref(data, ltp_tokenizer, bert_tokenizer)

with open(args.save_path, "w", encoding="utf-8") as f:
data = [json.dumps(ref) + "\n" for ref in ref_ids]
f.writelines(data)


if __name__ == "__main__":
parser = argparse.ArgumentParser(description="prepare_chinese_ref")
parser.add_argument(
"--file_name",
type=str,
default="./resources/chinese-demo.txt",
help="file need process, same as training data in lm",
)
parser.add_argument(
"--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path"
)
parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer")
parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res")

args = parser.parse_args()
main(args)
29 changes: 25 additions & 4 deletions examples/language-modeling/run_language_modeling.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,8 +37,10 @@
AutoTokenizer,
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForWholeWordMask,
HfArgumentParser,
LineByLineTextDataset,
LineByLineWithRefDataset,
PreTrainedTokenizer,
TextDataset,
Trainer,
Expand Down Expand Up @@ -101,6 +103,10 @@ class DataTrainingArguments:
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
chinese_ref_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input ref data file for whole word mask in Chinees."},
)
line_by_line: bool = field(
default=False,
metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
Expand All @@ -109,6 +115,7 @@ class DataTrainingArguments:
mlm: bool = field(
default=False, metadata={"help": "Train with masked-language modeling loss instead of language modeling."}
)
whole_word_mask: bool = field(default=False, metadata={"help": "Whether ot not to use whole word mask."})
mlm_probability: float = field(
default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
)
Expand Down Expand Up @@ -143,6 +150,16 @@ def get_dataset(
):
def _dataset(file_path):
if args.line_by_line:
if args.chinese_ref_file is not None:
if not args.whole_word_mask or not args.mlm:
raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask")
return LineByLineWithRefDataset(
tokenizer=tokenizer,
file_path=file_path,
block_size=args.block_size,
ref_path=args.chinese_ref_file,
)

return LineByLineTextDataset(tokenizer=tokenizer, file_path=file_path, block_size=args.block_size)
else:
return TextDataset(
Expand Down Expand Up @@ -174,7 +191,6 @@ def main():
"Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
"or remove the --do_eval argument."
)

if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
Expand Down Expand Up @@ -270,9 +286,14 @@ def main():
max_span_length=data_args.max_span_length,
)
else:
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer, mlm=data_args.mlm, mlm_probability=data_args.mlm_probability
)
if data_args.mlm and data_args.whole_word_mask:
data_collator = DataCollatorForWholeWordMask(
tokenizer=tokenizer, mlm_probability=data_args.mlm_probability
)
else:
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer, mlm=data_args.mlm, mlm_probability=data_args.mlm_probability
)

# Initialize our Trainer
trainer = Trainer(
Expand Down
2 changes: 2 additions & 0 deletions src/transformers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -284,13 +284,15 @@
DataCollatorForNextSentencePrediction,
DataCollatorForPermutationLanguageModeling,
DataCollatorForSOP,
DataCollatorForWholeWordMask,
DataCollatorWithPadding,
default_data_collator,
)
from .data.datasets import (
GlueDataset,
GlueDataTrainingArguments,
LineByLineTextDataset,
LineByLineWithRefDataset,
LineByLineWithSOPTextDataset,
SquadDataset,
SquadDataTrainingArguments,
Expand Down
Loading

0 comments on commit a16e568

Please sign in to comment.