Tasks:
- Refine the target and make sure there are no outliers - COMPLETE
- Begin running top_board / breakout_boards updater
- Add top boards within the compiler - not till a later date...
- Create log for AWS instance to update
Questions: Q: How do I treat weekends and market holidays? A: Remove them. The message boards are much less active on those days.
Predict a massive change in stock price for a given small cap stock
- Web-scraped data from http://investorshub.advfn.com/
- Past stock prices and volume
- Web scrape data from iHub
- Compile with historical stock data
- Create algorithm to determine success for target
- Feature Space:
- 52-week prior stock volume
- 52-week prior iHub message frequency
- Others (promotional emails, iHub’s “top boards”)
- Target:
- ‘buy’ (1) : a significant stock price change is upcoming
- ‘no buy’ (0): no significant stock price change is upcoming
-- data
-- raw_data
-- ihub
-- message_boards
-- top_boards
-- breakout_boards
-- stock
-- {raw stock data}
-- data
-- compiled data
-- src
-- data_management
-- ihub_data.py
INPUT: Ticker Symbol
OUTPUT: create/update the data/raw_data/ihub folder
-- stock_data.py
INPUT: Ticker Symbol
OUTPUT: create/update the data/raw_data/stock folder
-- compile_data.py
INPUT: None
OUTPUT: combined/manipulated data
-- model
-- model.py
INPUT: data from the model_data folder
OUTPUT: model
-- data_visualization
-- tbd
-- web_app
-- tbd