Skip to content

OpenAI Baselines: high-quality implementations of reinforcement learning algorithms

License

Notifications You must be signed in to change notification settings

mkhassan/baselines

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Baselines

We're releasing OpenAI Baselines, a set of high-quality implementations of reinforcement learning algorithms. To start, we're making available an open source version of Deep Q-Learning and three of its variants.

These algorithms will make it easier for the research community to replicate, refine, and identify new ideas, and will create good baselines to build research on top of. Our DQN implementation and its variants are roughly on par with the scores in published papers. We expect they will be used as a base around which new ideas can be added, and as a tool for comparing a new approach against existing ones.

You can install it by typing:

pip install baselines

If you are curious.

Train a Cartpole agent and watch it play once it converges!

Here's a list of commands to run to quickly get a working example:

# Train model and save the results to cartpole_model.pkl
python -m baselines.deepq.experiments.train_cartpole
# Load the model saved in cartpole_model.pkl and visualize the learned policy
python -m baselines.deepq.experiments.enjoy_cartpole

Be sure to check out the source code of both files!

If you wish to apply DQN to solve a problem.

Check out our simple agent trained with one stop shop deepq.learn function.

  • baselines/deepq/experiments/train_cartpole.py - train a Cartpole agent.
  • baselines/deepq/experiments/train_pong.py - train a Pong agent using convolutional neural networks.

In particular notice that once deepq.learn finishes training it returns act function which can be used to select actions in the environment. Once trained you can easily save it and load at later time. For both of the files listed above there are complimentary files enjoy_cartpole.py and enjoy_pong.py respectively, that load and visualize the learned policy.

If you wish to experiment with the algorithm

Check out the examples
  • baselines/deepq/experiments/custom_cartpole.py - Cartpole training with more fine grained control over the internals of DQN algorithm.
  • baselines/deepq/experiments/atari/train.py - more robust setup for training at scale.
Download a pretrained Atari agent

For some research projects it is sometimes useful to have an already trained agent handy. There's a variety of models to choose from. You can list them all by running:

python -m baselines.deepq.experiments.atari.download_model

Once you pick a model, you can download it and visualize the learned policy. Be sure to pass --dueling flag to visualization script when using dueling models.

python -m baselines.deepq.experiments.atari.download_model --blob model-atari-duel-pong-1 --model-dir /tmp/models
python -m baselines.deepq.experiments.atari.enjoy --model-dir /tmp/models/model-atari-duel-pong-1 --env Pong --dueling

About

OpenAI Baselines: high-quality implementations of reinforcement learning algorithms

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%