-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
949cb62
commit 0caa8bb
Showing
46 changed files
with
1,697 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -127,3 +127,6 @@ dmypy.json | |
|
||
# Pyre type checker | ||
.pyre/ | ||
|
||
data/ | ||
wandb/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
import argparse | ||
|
||
|
||
tasks = ['Breakout', 'NSBT'] | ||
distributions = ['EuclideanNormal', 'IsotropicHWN', 'DiagonalHWN', 'FullHWN', 'RoWN'] | ||
|
||
|
||
def get_initial_parser(): | ||
parser = argparse.ArgumentParser(add_help=False) | ||
parser.add_argument('--task', type=str, choices=tasks) | ||
parser.add_argument('--dist', type=str, choices=distributions) | ||
return parser | ||
|
||
|
||
def add_train_args(parser): | ||
group = parser.add_argument_group('train') | ||
group.add_argument('--task', type=str, choices=tasks) | ||
group.add_argument('--dist', type=str, choices=distributions) | ||
group.add_argument('--seed', type=int, default=7777) | ||
group.add_argument('--latent_dim', type=int, default=2) | ||
group.add_argument('--beta', type=float, default=1.) | ||
group.add_argument('--n_epochs', type=int, default=10) | ||
group.add_argument('--train_batch_size', type=int, default=32) | ||
group.add_argument('--test_batch_size', type=int, default=32) | ||
group.add_argument('--lr', type=float, default=1e-5) | ||
group.add_argument('--device', type=str, default='cuda:0') | ||
group.add_argument('--eval_interval', type=int, default=10) | ||
group.add_argument('--log_interval', type=int, default=10) | ||
group.add_argument('--log_dir', type=str, default='logs/') | ||
group.add_argument('--train_samples', type=int, default=1) | ||
group.add_argument('--test_samples', type=int, default=500) | ||
group.add_argument('--exp_name', type=str, default='dummy') | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
from .layers import EncoderLayer, DecoderLayer, EmbeddingLayer | ||
from .distribution import Distribution | ||
from .prior import get_prior |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
import torch | ||
from torch.distributions import Normal | ||
|
||
from ..hwn import HWN | ||
|
||
|
||
class Distribution(HWN): | ||
def __init__(self, mean, covar) -> None: | ||
base = Normal( | ||
torch.zeros( | ||
covar.size(), | ||
device=covar.device | ||
), | ||
covar | ||
) | ||
|
||
super().__init__(mean, base) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
import torch | ||
import geoopt | ||
from torch import nn | ||
from torch.nn import functional as F | ||
|
||
from ..utils import ExpLayer, LogLayer | ||
|
||
EncoderLayer = ExpLayer | ||
DecoderLayer = LogLayer | ||
|
||
|
||
class EmbeddingLayer(nn.Module): | ||
def __init__(self, args, n_words): | ||
super().__init__() | ||
|
||
self.args = args | ||
self.latent_dim = args.latent_dim | ||
self.n_words = n_words | ||
self.initial_sigma = args.initial_sigma | ||
self.manifold = geoopt.manifolds.Lorentz() | ||
|
||
mean_initialize = torch.empty([self.n_words, self.latent_dim]) | ||
nn.init.normal_(mean_initialize, std=args.initial_sigma) | ||
self.mean = nn.Embedding.from_pretrained(mean_initialize, freeze=False) | ||
|
||
covar_initialize = torch.empty([self.n_words, self.latent_dim]) | ||
nn.init.normal_(covar_initialize, std=args.initial_sigma) | ||
self.covar = nn.Embedding.from_pretrained(covar_initialize, freeze=False) | ||
|
||
def forward(self, x): | ||
mean = self.mean(x) | ||
mean = F.pad(mean, (1, 0)) | ||
mean = self.manifold.expmap0(mean) | ||
|
||
covar = F.softplus(self.covar(x)) | ||
|
||
return mean, covar | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
import torch | ||
import geoopt | ||
from .distribution import Distribution | ||
|
||
|
||
def get_prior(args): | ||
m = geoopt.manifolds.Lorentz() | ||
|
||
mean = m.origin([1, args.latent_dim + 1], device=args.device) | ||
covar = torch.ones( | ||
1, | ||
args.latent_dim, | ||
device=args.device | ||
) | ||
|
||
prior = Distribution(mean, covar) | ||
return prior | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
from .layers import EncoderLayer, DecoderLayer, EmbeddingLayer | ||
from .distribution import Distribution | ||
from .prior import get_prior |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
import torch | ||
from torch.distributions import Normal | ||
|
||
def kl_dist(mu0, std0, mu1, std1): | ||
k = mu0.size(-1) | ||
logvar0, logvar1 = 2 * std0.log(), 2 * std1.log() | ||
|
||
dist = logvar1 - logvar0 + (((mu0 - mu1).pow(2) + 1e-9).log() - logvar1).exp() + (logvar0 - logvar1).exp() | ||
dist = dist.sum(dim=-1) - k | ||
return dist * 0.5 | ||
|
||
class Distribution(): | ||
def __init__(self, mean, covar) -> None: | ||
self.mean = mean | ||
self.covar = covar | ||
|
||
self.base = Normal(self.mean, self.covar) | ||
|
||
def log_prob(self, z): | ||
return self.base.log_prob(z).sum(dim=-1) | ||
|
||
def rsample(self, N): | ||
return self.base.rsample([N]) | ||
|
||
def sample(self, N): | ||
with torch.no_grad(): | ||
return self.rsample(N) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
import torch | ||
from torch import nn | ||
from torch.nn import functional as F | ||
|
||
|
||
class EncoderLayer(nn.Module): | ||
def __init__(self, args, feature_dim) -> None: | ||
super().__init__() | ||
|
||
self.latent_dim = args.latent_dim | ||
self.feature_dim = feature_dim | ||
|
||
self.variational = nn.Linear( | ||
self.feature_dim, | ||
2 * self.latent_dim | ||
) | ||
|
||
def forward(self, feature): | ||
feature = self.variational(feature) | ||
mean, covar = torch.split( | ||
feature, | ||
[self.latent_dim, self.latent_dim], | ||
dim=-1 | ||
) | ||
covar = F.softplus(covar) | ||
|
||
return mean, covar | ||
|
||
|
||
class DecoderLayer(nn.Module): | ||
def __init__(self) -> None: | ||
super().__init__() | ||
|
||
def forward(self, z): | ||
return z | ||
|
||
|
||
class EmbeddingLayer(nn.Module): | ||
def __init__(self, args, n_words): | ||
super().__init__() | ||
|
||
self.args = args | ||
self.latent_dim = args.latent_dim | ||
self.n_words = n_words | ||
self.initial_sigma = args.initial_sigma | ||
|
||
mean_initialize = torch.empty([self.n_words, self.latent_dim]) | ||
nn.init.normal_(mean_initialize, std=args.initial_sigma) | ||
self.mean = nn.Embedding.from_pretrained(mean_initialize, freeze=False) | ||
|
||
covar_initialize = torch.empty([self.n_words, self.latent_dim]) | ||
nn.init.normal_(covar_initialize, std=args.initial_sigma) | ||
self.covar = nn.Embedding.from_pretrained(covar_initialize, freeze=False) | ||
|
||
def forward(self, x): | ||
mean = self.mean(x) | ||
covar = F.softplus(self.covar(x)) | ||
|
||
return mean, covar | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
import torch | ||
|
||
from .distribution import Distribution | ||
|
||
|
||
def get_prior(args): | ||
mean = torch.zeros( | ||
[1, args.latent_dim], | ||
device=args.device | ||
) | ||
covar = torch.ones( | ||
[1, args.latent_dim], | ||
device=args.device | ||
) | ||
|
||
prior = Distribution(mean, covar) | ||
return prior | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
from .layers import EncoderLayer, DecoderLayer, EmbeddingLayer | ||
from .distribution import Distribution | ||
from .prior import get_prior |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,29 @@ | ||
import torch | ||
from torch.distributions import MultivariateNormal | ||
|
||
from ..hwn import HWN | ||
|
||
|
||
class Distribution(HWN): | ||
def __init__(self, mean, covar) -> None: | ||
base = MultivariateNormal( | ||
torch.zeros( | ||
mean.size(), | ||
device=covar.device | ||
)[..., 1:], | ||
covar | ||
) | ||
|
||
super().__init__(mean, base) | ||
|
||
def log_prob(self, z): | ||
u = self.manifold.logmap(self.mean, z) | ||
v = self.manifold.transp(self.mean, self.origin, u) | ||
log_prob_v = self.base.log_prob(v[:, :, 1:]) | ||
|
||
r = self.manifold.norm(u) | ||
log_det = (self.latent_dim - 1) * (torch.sinh(r).log() - r.log()) | ||
|
||
log_prob_z = log_prob_v - log_det | ||
return log_prob_z | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,90 @@ | ||
import torch | ||
import geoopt | ||
from torch import nn | ||
from torch.nn import functional as F | ||
|
||
from ..utils import LogLayer | ||
|
||
|
||
class EncoderLayer(nn.Module): | ||
def __init__(self, args, feature_dim) -> None: | ||
super().__init__() | ||
|
||
self.latent_dim = args.latent_dim | ||
self.feature_dim = feature_dim | ||
|
||
self.manifold = geoopt.manifolds.Lorentz() | ||
self.variational = nn.Linear( | ||
self.feature_dim, | ||
self.latent_dim + self.latent_dim ** 2 | ||
) | ||
|
||
def forward(self, feature): | ||
feature = self.variational(feature) | ||
mu, covar = torch.split( | ||
feature, | ||
[self.latent_dim, self.latent_dim ** 2], | ||
dim=-1 | ||
) | ||
|
||
mu = F.pad(mu, (1, 0)) | ||
mu = self.manifold.expmap0(mu) | ||
|
||
covar_size = covar.size()[:-1] | ||
covar = covar.view( | ||
*covar_size, | ||
self.latent_dim, | ||
self.latent_dim | ||
) | ||
covar = covar.matmul(covar.transpose(-1, -2)) | ||
covar = covar + 1e-9 * torch.eye( | ||
self.latent_dim, | ||
device=covar.device | ||
)[None, ...] | ||
|
||
return mu, covar | ||
|
||
|
||
DecoderLayer = LogLayer | ||
|
||
|
||
class EmbeddingLayer(nn.Module): | ||
def __init__(self, args, n_words): | ||
super().__init__() | ||
|
||
self.args = args | ||
self.latent_dim = args.latent_dim | ||
self.n_words = n_words | ||
self.initial_sigma = args.initial_sigma | ||
self.manifold = geoopt.manifolds.Lorentz() | ||
|
||
mean_initialize = torch.empty([self.n_words, self.latent_dim]) | ||
nn.init.normal_(mean_initialize, std=args.initial_sigma) | ||
self.mean = nn.Embedding.from_pretrained(mean_initialize, freeze=False) | ||
|
||
covar_initialize = torch.stack( | ||
[torch.eye(self.latent_dim) for _ in range(self.n_words)] | ||
).view(self.n_words, -1) | ||
covar_initialize = covar_initialize * torch.randn(covar_initialize.size()) * self.initial_sigma | ||
self.covar = nn.Embedding.from_pretrained(covar_initialize, freeze=False) | ||
|
||
def forward(self, x): | ||
mean = self.mean(x) | ||
mean = F.pad(mean, (1, 0)) | ||
mean = self.manifold.expmap0(mean) | ||
|
||
covar = self.covar(x) | ||
covar_size = covar.size()[:-1] | ||
covar = covar.view( | ||
*covar_size, | ||
self.latent_dim, | ||
self.latent_dim | ||
) | ||
covar = covar.matmul(covar.transpose(-1, -2)) | ||
covar = covar + 1e-9 * torch.eye( | ||
self.latent_dim, | ||
device=covar.device | ||
)[None, ...] | ||
|
||
return mean, covar | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
import torch | ||
import geoopt | ||
from .distribution import Distribution | ||
|
||
|
||
def get_prior(args): | ||
m = geoopt.manifolds.Lorentz() | ||
|
||
mean = m.origin([1, args.latent_dim + 1], device=args.device) | ||
covar = torch.eye( | ||
args.latent_dim, | ||
device=args.device | ||
)[None, ...] | ||
|
||
prior = Distribution(mean, covar) | ||
return prior | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
from .layers import EncoderLayer, DecoderLayer, EmbeddingLayer | ||
from .distribution import Distribution | ||
from .prior import get_prior |
Oops, something went wrong.