Skip to content

mo-sharif/compare-ai-models

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Compare AI models

This app uses GraphQL to integrate multiple AI models for generating responses from user prompts. Users type a prompt, and the app queries different AI models like Flan-T5, Byte5, Phi2, and MT5. The results are displayed side-by-side for easy comparison. This is ideal for developers, researchers, and AI enthusiasts who want to test and compare different AI models for tasks like text generation and sentiment analysis. The app uses React for the frontend and Apollo Server for the backend, ensuring a fast and smooth user experience.

📖 Read the full article here

huggingface-ai-compare

Branches

Start App

cd frontend
npm run start

cd backend
npm run start

App Structure w/ GraphQL

my-app/
├── backend/
│   ├── src/
│   │   ├── config/
│   │   │   └── apis.js
│   │   ├── graphql/
│   │   │   ├── resolvers/
│   │   │   │   └── index.js
│   │   │   ├── schemas/
│   │   │   │   └── index.js
│   │   │   └── typeDefs.js
│   │   ├── services/
│   │   │   └── apiRequest.js
│   │   ├── index.js
│   │   └── server.js
│   ├── .env
│   ├── package.json
│   ├── package-lock.json
│   └── README.md
├── frontend/
│   ├── src/
│   │   ├── apollo/
│   │   │   └── client.js
│   │   ├── components/
│   │   │   ├── AIResults.js
│   │   │   └── PromptInput.js
│   │   ├── hooks/
│   │   │   └── useHuggingFaceAPI.js
│   │   ├── pages/
│   │   │   └── App.js
│   │   ├── App.test.js
│   │   ├── index.css
│   │   └── index.js
│   ├── public/
│   │   └── index.html
│   ├── .env
│   ├── package.json
│   ├── package-lock.json
│   ├── README.md
│   └── webpack.config.js
├── .gitignore
├── README.md
└── package.json

Data Flow: Backend to Frontend with GraphQL

1. Frontend

  1. User Interaction:

    • The user interacts with the PromptInput component by typing a prompt and submitting the form.
  2. PromptInput Component:

    • Captures the user's input and calls a handler function with the prompt.
  3. App Component:

    • Maintains the state of the prompt.
    • Passes the prompt to the useHuggingFaceAPI hook to trigger the GraphQL query.
    • Renders PromptInput and AIResults components.
  4. useHuggingFaceAPI Hook:

    • Uses Apollo Client to send the GraphQL query to the backend with the user's prompt.
    • Manages loading and error states.
    • Updates the state with the received data.

2. Backend

  1. API Configurations:

    • Define API endpoints in a configuration file (e.g., apis.js).
  2. GraphQL Schema:

    • Define the type definitions for the queries using the API configurations (e.g., typeDefs).
  3. GraphQL Resolvers:

    • Implement resolver functions to handle the queries.
    • Each resolver fetches data from the respective API endpoint.
  4. Express Server Setup:

    • Configure and start an Express server.
    • Integrate Apollo Server with the Express app to handle GraphQL requests.

Data Flow Summary

  1. User Submits Prompt:

    • User enters a prompt in the PromptInput component and submits the form.
    • The App component receives the prompt and triggers the useHuggingFaceAPI hook.
  2. GraphQL Query:

    • The useHuggingFaceAPI hook sends a GraphQL query to the backend with the user's prompt.
  3. Backend Processing:

    • The GraphQL server receives the query.
    • The resolver functions fetch data from the specified API endpoints.
    • The fetched data is returned to the frontend.
  4. Display Results:

    • The useHuggingFaceAPI hook updates the state with the received data.
    • The AIResults component renders the data, showing the results to the user.

About

Compare hugging face ai models with interference APIs

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published