Skip to content

D-FINE: Redefine Regression Task of DETRs as Fine-grained Distribution Refinement 💥💥💥

License

Notifications You must be signed in to change notification settings

mohamedsamirx/D-FINE

 
 

Repository files navigation

English | 简体中文 | 日本語 | English Blog | 中文博客

D-FINE: Redefine Regression Task of DETRs as Fine‑grained Distribution Refinement

license prs issues arXiv pre-commit.ci status stars

📄 This is the official implementation of the paper:
D-FINE: Redefine Regression Task of DETRs as Fine-grained Distribution Refinement

Yansong Peng, Hebei Li, Peixi Wu, Yueyi Zhang, Xiaoyan Sun, and Feng Wu

University of Science and Technology of China

sota

If you like D-FINE, please give us a ⭐! Your support motivates us to keep improving!

D-FINE is a powerful real-time object detector that redefines the bounding box regression task in DETRs as Fine-grained Distribution Refinement (FDR) and introduces Global Optimal Localization Self-Distillation (GO-LSD), achieving outstanding performance without introducing additional inference and training costs.

Video

We conduct object detection using D-FINE and YOLO11 on a complex street scene video from YouTube. Despite challenging conditions such as backlighting, motion blur, and dense crowds, D-FINE-X successfully detects nearly all targets, including subtle small objects like backpacks, bicycles, and traffic lights. Its confidence scores and the localization precision for blurred edges are significantly higher than those of YOLO11.

video_vis.mp4

🚀 Updates

  • [2024.10.18] Release D-FINE series.
  • [2024.10.25] Add custom dataset finetuning configs (#7).
  • [2024.10.30] Update D-FINE-L (E25) pretrained model, with performance improved by 2.0%.
  • [2024.11.07] Release D-FINE-N, achiving 42.8% APval on COCO @ 472 FPST4!

Model Zoo

COCO

Model Dataset APval #Params Latency GFLOPs config checkpoint logs
D‑FINE‑N COCO 42.8 4M 2.12ms 7 yml 42.8 url
D‑FINE‑S COCO 48.5 10M 3.49ms 25 yml 48.5 url
D‑FINE‑M COCO 52.3 19M 5.62ms 57 yml 52.3 url
D‑FINE‑L COCO 54.0 31M 8.07ms 91 yml 54.0 url
D‑FINE‑X COCO 55.8 62M 12.89ms 202 yml 55.8 url

Objects365+COCO

Model Dataset APval #Params Latency GFLOPs config checkpoint logs
D‑FINE‑S Objects365+COCO 50.7 10M 3.49ms 25 yml 50.7 url
D‑FINE‑M Objects365+COCO 55.1 19M 5.62ms 57 yml 55.1 url
D‑FINE‑L Objects365+COCO 57.3 31M 8.07ms 91 yml 57.3 url
D‑FINE‑X Objects365+COCO 59.3 62M 12.89ms 202 yml 59.3 url

We highly recommend that you use the Objects365 pre-trained model for fine-tuning:

⚠️ Important: Please note that this is generally beneficial for complex scene understanding. If your categories are very simple, it might lead to overfitting and suboptimal performance.

🔥 Pretrained Models on Objects365 (Best generalization)
Model Dataset APval AP5000 #Params Latency GFLOPs config checkpoint logs
D‑FINE‑S Objects365 31.0 30.5 10M 3.49ms 25 yml 30.5 url
D‑FINE‑M Objects365 38.6 37.4 19M 5.62ms 57 yml 37.4 url
D‑FINE‑L Objects365 - 40.6 31M 8.07ms 91 yml 40.6 url
D‑FINE‑L (E25) Objects365 44.7 42.6 31M 8.07ms 91 yml 42.6 url
D‑FINE‑X Objects365 49.5 46.5 62M 12.89ms 202 yml 46.5 url
  • E25: Re-trained and extended the pretraining to 25 epochs.
  • APval is evaluated on Objects365 full validation set.
  • AP5000 is evaluated on the first 5000 samples of the Objects365 validation set.

Notes:

  • APval is evaluated on MSCOCO val2017 dataset.
  • Latency is evaluated on a single T4 GPU with $batch\_size = 1$, $fp16$, and $TensorRT==10.4.0$.
  • Objects365+COCO means finetuned model on COCO using pretrained weights trained on Objects365.

Quick start

Setup

conda create -n dfine python=3.11.9
conda activate dfine
pip install -r requirements.txt

Data Preparation

COCO2017 Dataset
  1. Download COCO2017 from OpenDataLab or COCO.

  2. Modify paths in coco_detection.yml

    train_dataloader:
        img_folder: /data/COCO2017/train2017/
        ann_file: /data/COCO2017/annotations/instances_train2017.json
    val_dataloader:
        img_folder: /data/COCO2017/val2017/
        ann_file: /data/COCO2017/annotations/instances_val2017.json
Objects365 Dataset
  1. Download Objects365 from OpenDataLab.

  2. Set the Base Directory:

export BASE_DIR=/data/Objects365/data
  1. Extract and organize the downloaded files, resulting directory structure:
${BASE_DIR}/train
├── images
│   ├── v1
│   │   ├── patch0
│   │   │   ├── 000000000.jpg
│   │   │   ├── 000000001.jpg
│   │   │   └── ... (more images)
│   ├── v2
│   │   ├── patchx
│   │   │   ├── 000000000.jpg
│   │   │   ├── 000000001.jpg
│   │   │   └── ... (more images)
├── zhiyuan_objv2_train.json
${BASE_DIR}/val
├── images
│   ├── v1
│   │   ├── patch0
│   │   │   ├── 000000000.jpg
│   │   │   └── ... (more images)
│   ├── v2
│   │   ├── patchx
│   │   │   ├── 000000000.jpg
│   │   │   └── ... (more images)
├── zhiyuan_objv2_val.json
  1. Create a New Directory to Store Images from the Validation Set:
mkdir -p ${BASE_DIR}/train/images_from_val
  1. Copy the v1 and v2 folders from the val directory into the train/images_from_val directory
cp -r ${BASE_DIR}/val/images/v1 ${BASE_DIR}/train/images_from_val/
cp -r ${BASE_DIR}/val/images/v2 ${BASE_DIR}/train/images_from_val/
  1. Run remap_obj365.py to merge a subset of the validation set into the training set. Specifically, this script moves samples with indices between 5000 and 800000 from the validation set to the training set.
python tools/remap_obj365.py --base_dir ${BASE_DIR}
  1. Run the resize_obj365.py script to resize any images in the dataset where the maximum edge length exceeds 640 pixels. Use the updated JSON file generated in Step 5 to process the sample data. Ensure that you resize images in both the train and val datasets to maintain consistency.
python tools/resize_obj365.py --base_dir ${BASE_DIR}
  1. Modify paths in obj365_detection.yml

    train_dataloader:
        img_folder: /data/Objects365/data/train
        ann_file: /data/Objects365/data/train/new_zhiyuan_objv2_train_resized.json
    val_dataloader:
        img_folder: /data/Objects365/data/val/
        ann_file: /data/Objects365/data/val/new_zhiyuan_objv2_val_resized.json
CrowdHuman

Download COCO format dataset here: url

Custom Dataset

To train on your custom dataset, you need to organize it in the COCO format. Follow the steps below to prepare your dataset:

  1. Set remap_mscoco_category to False:

    This prevents the automatic remapping of category IDs to match the MSCOCO categories.

    remap_mscoco_category: False
  2. Organize Images:

    Structure your dataset directories as follows:

    dataset/
    ├── images/
    │   ├── train/
    │   │   ├── image1.jpg
    │   │   ├── image2.jpg
    │   │   └── ...
    │   ├── val/
    │   │   ├── image1.jpg
    │   │   ├── image2.jpg
    │   │   └── ...
    └── annotations/
        ├── instances_train.json
        ├── instances_val.json
        └── ...
    • images/train/: Contains all training images.
    • images/val/: Contains all validation images.
    • annotations/: Contains COCO-formatted annotation files.
  3. Convert Annotations to COCO Format:

    If your annotations are not already in COCO format, you'll need to convert them. You can use the following Python script as a reference or utilize existing tools:

    import json
    
    def convert_to_coco(input_annotations, output_annotations):
        # Implement conversion logic here
        pass
    
    if __name__ == "__main__":
        convert_to_coco('path/to/your_annotations.json', 'dataset/annotations/instances_train.json')
  4. Update Configuration Files:

    Modify your custom_detection.yml.

    task: detection
    
    evaluator:
      type: CocoEvaluator
      iou_types: ['bbox', ]
    
    num_classes: 777 # your dataset classes
    remap_mscoco_category: False
    
    train_dataloader:
      type: DataLoader
      dataset:
        type: CocoDetection
        img_folder: /data/yourdataset/train
        ann_file: /data/yourdataset/train/train.json
        return_masks: False
        transforms:
          type: Compose
          ops: ~
      shuffle: True
      num_workers: 4
      drop_last: True
      collate_fn:
        type: BatchImageCollateFunction
    
    val_dataloader:
      type: DataLoader
      dataset:
        type: CocoDetection
        img_folder: /data/yourdataset/val
        ann_file: /data/yourdataset/val/ann.json
        return_masks: False
        transforms:
          type: Compose
          ops: ~
      shuffle: False
      num_workers: 4
      drop_last: False
      collate_fn:
        type: BatchImageCollateFunction

Usage

COCO2017
  1. Set Model
export model=l  # n s m l x
  1. Training
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml --use-amp --seed=0
  1. Testing
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml --test-only -r model.pth
  1. Tuning
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml --use-amp --seed=0 -t model.pth
Objects365 to COCO2017
  1. Set Model
export model=l  # n s m l x
  1. Training on Objects365
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/objects365/dfine_hgnetv2_${model}_obj365.yml --use-amp --seed=0
  1. Tuning on COCO2017
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/objects365/dfine_hgnetv2_${model}_obj2coco.yml --use-amp --seed=0 -t model.pth
  1. Testing
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml --test-only -r model.pth
Custom Dataset
  1. Set Model
export model=l  # n s m l x
  1. Training on Custom Dataset
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/custom/dfine_hgnetv2_${model}_custom.yml --use-amp --seed=0
  1. Testing
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/custom/dfine_hgnetv2_${model}_custom.yml --test-only -r model.pth
  1. Tuning on Custom Dataset
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/custom/objects365/dfine_hgnetv2_${model}_obj2custom.yml --use-amp --seed=0 -t model.pth
  1. [Optional] Modify Class Mappings:

When using the Objects365 pre-trained weights to train on your custom dataset, the example assumes that your dataset only contains the classes 'Person' and 'Car'. For faster convergence, you can modify self.obj365_ids in src/solver/_solver.py as follows:

self.obj365_ids = [0, 5]  # Person, Cars

You can replace these with any corresponding classes from your dataset. The list of Objects365 classes with their corresponding IDs: https://github.com/Peterande/D-FINE/blob/352a94ece291e26e1957df81277bef00fe88a8e3/src/solver/_solver.py#L330

New training command:

CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/custom/dfine_hgnetv2_${model}_custom.yml --use-amp --seed=0 -t model.pth

However, if you don't wish to modify the class mappings, the pre-trained Objects365 weights will still work without any changes. Modifying the class mappings is optional and can potentially accelerate convergence for specific tasks.

Customizing Batch Size

For example, if you want to double the total batch size when training D-FINE-L on COCO2017, here are the steps you should follow:

  1. Modify your dataloader.yml to increase the total_batch_size:

    train_dataloader:
        total_batch_size: 64  # Previously it was 32, now doubled
  2. Modify your dfine_hgnetv2_l_coco.yml. Here’s how the key parameters should be adjusted:

    optimizer:
    type: AdamW
    params:
        -
        params: '^(?=.*backbone)(?!.*norm|bn).*$'
        lr: 0.000025  # doubled, linear scaling law
        -
        params: '^(?=.*(?:encoder|decoder))(?=.*(?:norm|bn)).*$'
        weight_decay: 0.
    
    lr: 0.0005  # doubled, linear scaling law
    betas: [0.9, 0.999]
    weight_decay: 0.0001  # need a grid search
    
    ema:  # added EMA settings
        decay: 0.9998  # adjusted by 1 - (1 - decay) * 2
        warmups: 500  # halved
    
    lr_warmup_scheduler:
        warmup_duration: 250  # halved
Customizing Input Size

If you'd like to train D-FINE-L on COCO2017 with an input size of 320x320, follow these steps:

  1. Modify your dataloader.yml:

    train_dataloader:
    dataset:
        transforms:
            ops:
                - {type: Resize, size: [320, 320], }
    collate_fn:
        base_size: 320
    dataset:
        transforms:
            ops:
                - {type: Resize, size: [320, 320], }
  2. Modify your dfine_hgnetv2.yml:

    eval_spatial_size: [320, 320]

Tools

Deployment
  1. Setup
pip install onnx onnxsim
export model=l  # n s m l x
  1. Export onnx
python tools/deployment/export_onnx.py --check -c configs/dfine/dfine_hgnetv2_${model}_coco.yml -r model.pth
  1. Export tensorrt
trtexec --onnx="model.onnx" --saveEngine="model.engine" --fp16
Inference (Visualization)
  1. Setup
pip install -r tools/inference/requirements.txt
export model=l  # n s m l x
  1. Inference (onnxruntime / tensorrt / torch)

Inference on images and videos is now supported.

python tools/inference/onnx_inf.py --onnx model.onnx --input image.jpg  # video.mp4
python tools/inference/trt_inf.py --trt model.engine --input image.jpg
python tools/inference/torch_inf.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml -r model.pth --input image.jpg --device cuda:0
Benchmark
  1. Setup
pip install -r tools/benchmark/requirements.txt
export model=l  # n s m l x
  1. Model FLOPs, MACs, and Params
python tools/benchmark/get_info.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml
  1. TensorRT Latency
python tools/benchmark/trt_benchmark.py --COCO_dir path/to/COCO2017 --engine_dir model.engine
Fiftyone Visualization
  1. Setup
pip install fiftyone
export model=l  # n s m l x
  1. Voxel51 Fiftyone Visualization (fiftyone)
python tools/visualization/fiftyone_vis.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml -r model.pth
Others
  1. Auto Resume Training
bash reference/safe_training.sh
  1. Converting Model Weights
python reference/convert_weight.py model.pth

Figures and Visualizations

FDR and GO-LSD
  1. Overview of D-FINE with FDR. The probability distributions that act as a more fine- grained intermediate representation are iteratively refined by the decoder layers in a residual manner. Non-uniform weighting functions are applied to allow for finer localization.

Fine-grained Distribution Refinement Process

  1. Overview of GO-LSD process. Localization knowledge from the final layer’s refined distributions is distilled into earlier layers through DDF loss with decoupled weighting strategies.

GO-LSD Process

Distributions

Visualizations of FDR across detection scenarios with initial and refined bounding boxes, along with unweighted and weighted distributions.

Hard Cases

The following visualization demonstrates D-FINE's predictions in various complex detection scenarios. These include cases with occlusion, low-light conditions, motion blur, depth of field effects, and densely populated scenes. Despite these challenges, D-FINE consistently produces accurate localization results.

D-FINE Predictions in Challenging Scenarios

Citation

If you use D-FINE or its methods in your work, please cite the following BibTeX entries:

bibtex
@misc{peng2024dfine,
      title={D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement},
      author={Yansong Peng and Hebei Li and Peixi Wu and Yueyi Zhang and Xiaoyan Sun and Feng Wu},
      year={2024},
      eprint={2410.13842},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgement

Our work is built upon RT-DETR. Thanks to the inspirations from RT-DETR, GFocal, LD, and YOLOv9.

✨ Feel free to contribute and reach out if you have any questions! ✨

About

D-FINE: Redefine Regression Task of DETRs as Fine-grained Distribution Refinement 💥💥💥

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 96.7%
  • C++ 1.6%
  • Other 1.7%