Typed data table is a typescript node project aiming to provide a type-safe way to interact with tabular data and a basic set of useful primitives.
npm install typed-data-table
// Let's set up some tables to work with
let inventory = new Table([
{ item: "Cheese", price: 4.25, inventory: 10, category: "Dairy" },
{ item: "Milk", price: 2.25, inventory: 10, category: "Dairy" },
{ item: "Tomato", price: 2.0, inventory: 20, category: "Produce" },
{ item: "Cucumber", price: 1.0, inventory: 15, category: "Produce" },
{ item: "Apple", price: 1.5, inventory: 40, category: "Produce" }
]);
let purchases = new Table([
{ item: "Cheese", customer: 1, amount: 2 },
{ item: "Tomato", customer: 1, amount: 1 },
{ item: "Apple", customer: 2, amount: 3 },
{ item: "Milk", customer: 3, amount: 1 }
]);
you can define new columns and rename or remove columns with chaining the value functions are typesafe, knowing about previous transformations and preserving the type information of the objects in each row
const updatedInventory = inventory
.withColumn("totalValue", (r) => r.price * r.inventory)
.renameColumn("inventory", "amountInStock");
You can join tables together in memory, again preserving type-assist for the resulting data structure
// you can do type-safe joins
const joinedPurchases = purchases
.innerJoin(
inventory,
(r) => r.item,
(r) => r.item,
(left, right) => ({
...left,
...right
})
)
.withColumn("cost", (r) => r.amount * r.price);
you can group the data as well, specifying the columns and how they're calculated over the groups of rows
const groupedByCustomer = joinedPurchases
.groupBy((r) => r.customer)
.aggregateByColumn({
// makes a column 'total' that is the sum of the cost column for each group
total: (rows) => sum(rows.map((r) => r.cost)),
// makes a column 'items' that is the sum of the amount column for each group
items: (rows) => sum(rows.map((r) => r.amount))
})
// even the strings in this func will auto-complete, aggregating a group returns a table with the group key
// as the 'id' column, you can rename this back to customer if desired.
.renameColumn("id", "customer");
you can compute rolling windows over the data
purchases
.sortValues(['timestamp'], true)
.rolling(3)
.aggregate(window => ({
timestamp: window.last().timestamp,
purchases: window.size(),
amountPurchased: window.sum('amount')
}))