-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
92 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
# This file is part of EAP. | ||
# | ||
# EAP is free software: you can redistribute it and/or modify | ||
# it under the terms of the GNU Lesser General Public License as | ||
# published by the Free Software Foundation, either version 3 of | ||
# the License, or (at your option) any later version. | ||
# | ||
# EAP is distributed in the hope that it will be useful, | ||
# but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
# GNU Lesser General Public License for more details. | ||
# | ||
# You should have received a copy of the GNU Lesser General Public | ||
# License along with EAP. If not, see <http://www.gnu.org/licenses/>. | ||
|
||
import operator | ||
import math | ||
import random | ||
|
||
import numpy | ||
|
||
from deap import algorithms | ||
from deap import base | ||
from deap import creator | ||
from deap import tools | ||
from deap import gp | ||
|
||
# Define new functions | ||
def protectedDiv(left, right): | ||
try: | ||
return left / right | ||
except ZeroDivisionError: | ||
return 1 | ||
|
||
pset = gp.PrimitiveSet("MAIN", 1) | ||
pset.addPrimitive(operator.add, 2) | ||
pset.addPrimitive(operator.sub, 2) | ||
pset.addPrimitive(operator.mul, 2) | ||
pset.addPrimitive(protectedDiv, 2) | ||
pset.addPrimitive(operator.neg, 1) | ||
pset.addPrimitive(math.cos, 1) | ||
pset.addPrimitive(math.sin, 1) | ||
pset.addEphemeralConstant("rand101", lambda: random.randint(-1,1)) | ||
pset.renameArguments(ARG0='x') | ||
|
||
creator.create("FitnessMin", base.Fitness, weights=(-1.0,)) | ||
creator.create("Individual", gp.PrimitiveTree, fitness=creator.FitnessMin) | ||
|
||
toolbox = base.Toolbox() | ||
toolbox.register("expr", gp.genHalfAndHalf, pset=pset, min_=1, max_=2) | ||
toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.expr) | ||
toolbox.register("population", tools.initRepeat, list, toolbox.individual) | ||
toolbox.register("compile", gp.compile, pset=pset) | ||
|
||
def evalSymbReg(individual, points): | ||
# Transform the tree expression in a callable function | ||
func = toolbox.compile(expr=individual) | ||
# Evaluate the mean squared error between the expression | ||
# and the real function : x**4 + x**3 + x**2 + x | ||
sqerrors = ((func(x) - x**4 - x**3 - x**2 - x)**2 for x in points) | ||
return math.fsum(sqerrors) / len(points), | ||
|
||
toolbox.register("evaluate", evalSymbReg, points=[x/10. for x in range(-10,10)]) | ||
toolbox.register("select", tools.selTournament, tournsize=3) | ||
toolbox.register("mate", gp.cxOnePoint) | ||
toolbox.register("expr_mut", gp.genFull, min_=0, max_=2) | ||
toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut, pset=pset) | ||
|
||
toolbox.decorate("mate", gp.staticLimit(key=operator.attrgetter("height"), max_value=17)) | ||
toolbox.decorate("mutate", gp.staticLimit(key=operator.attrgetter("height"), max_value=17)) | ||
|
||
def main(): | ||
random.seed(318) | ||
|
||
pop = toolbox.population(n=300) | ||
hof = tools.HallOfFame(1) | ||
|
||
stats_fit = tools.Statistics(lambda ind: ind.fitness.values) | ||
stats_size = tools.Statistics(len) | ||
mstats = tools.MultiStatistics(fitness=stats_fit, size=stats_size) | ||
mstats.register("avg", numpy.mean) | ||
mstats.register("std", numpy.std) | ||
mstats.register("min", numpy.min) | ||
mstats.register("max", numpy.max) | ||
|
||
pop, log = gp.harm(pop, toolbox, 0.5, 0.1, 40, alpha=0.05, beta=10, gamma=0.25, rho=0.9, stats=mstats, | ||
halloffame=hof, verbose=True) | ||
# print log | ||
return pop, log, hof | ||
|
||
if __name__ == "__main__": | ||
main() |