Skip to content
This repository has been archived by the owner on May 4, 2018. It is now read-only.

Commit

Permalink
Drop "corrected" flag.
Browse files Browse the repository at this point in the history
  • Loading branch information
blakejohnson committed Mar 14, 2013
1 parent 12c51d7 commit d74ad66
Showing 1 changed file with 27 additions and 46 deletions.
73 changes: 27 additions & 46 deletions base/statistics.jl
Original file line number Diff line number Diff line change
Expand Up @@ -19,57 +19,44 @@ function median!{T<:Real}(v::AbstractVector{T})
isnan(v[end]) && error("median is undefined in presence of NaNs")
isodd(length(v)) ? float(v[div(end+1,2)]) : (v[div(end,2)]+v[div(end,2)+1])/2
end
median{T<:Real}(v::AbstractArray{T}) = median!(copy(reshape(v, length(v))))
median{T<:Real}(v::AbstractArray{T}) = median!(copy(vec(v)))

## variance with known mean
function varm(v::AbstractVector, m::Number, corrected::Bool)
function varm(v::AbstractVector, m::Number)
n = length(v)
if n == 0 || (n == 1 && corrected)
if n == 0 || n == 1
return NaN
end
x = v - m
return dot(x, x) / (n - (corrected ? 1 : 0))
return dot(x, x) / (n - 1)
end
varm(v::AbstractVector, m::Number) = varm(v, m, true)
varm(v::AbstractArray, m::Number, corrected::Bool) = varm(reshape(v, length(v)), m, corrected)
varm(v::AbstractArray, m::Number) = varm(v, m, true)
function varm(v::Ranges, m::Number, corrected::Bool)
varm(v::AbstractArray, m::Number) = varm(vec(v), m)
function varm(v::Ranges, m::Number)
f = first(v) - m
s = step(v)
l = length(v)
if l == 0 || (l == 1 && corrected)
if l == 0 || l == 1
return NaN
end
if corrected
return f^2 * l / (l - 1) + f * s * l + s^2 * l * (2 * l - 1) / 6
else
return f^2 + f * s * (l - 1) + s^2 * (l - 1) * (2 * l - 1) / 6
end
return f^2 * l / (l - 1) + f * s * l + s^2 * l * (2 * l - 1) / 6
end
varm(v::Ranges, m::Number) = varm(v, m, true)

## variance
function var(v::Ranges, corrected::Bool)
function var(v::Ranges)
s = step(v)
l = length(v)
if l == 0 || (l == 1 && corrected)
if l == 0 || l == 1
return NaN
end
return abs2(s) * (l + 1) * (corrected ? l : (l - 1)) / 12
return abs2(s) * (l + 1) * l / 12
end
var(v::AbstractVector, corrected::Bool) = varm(v, mean(v), corrected)
var(v::AbstractArray, corrected::Bool) = var(reshape(v, length(v)), corrected)
var(v::AbstractArray) = var(v, true)
var(v::AbstractArray) = varm(v, mean(v))

## standard deviation with known mean
stdm(v::AbstractArray, m::Number, corrected::Bool) = sqrt(varm(v, m, corrected))
stdm(v::AbstractArray, m::Number) = stdm(v, m, true)
stdm(v, m::Number) = sqrt(varm(v, m))

## standard deviation
std(v::AbstractArray, corrected::Bool) = stdm(v, mean(v), corrected)
std(v::AbstractArray) = std(v, true)
std(v::Ranges, corrected::Bool) = sqrt(var(v, corrected))
std(v::Ranges) = std(v, true)
std(v) = sqrt(var(v))

## hist ##

Expand Down Expand Up @@ -155,35 +142,35 @@ function center(x::AbstractVector)
res
end

function cov(x::AbstractVecOrMat, y::AbstractVecOrMat, corrected::Bool)
function cov(x::AbstractVecOrMat, y::AbstractVecOrMat)
if size(x, 1) != size(y, 1)
error("incompatible matrices")
end
n = size(x, 1)
xc = center(x)
yc = center(y)
conj(xc' * yc / (n - (corrected ? 1 : 0)))
conj(xc' * yc / (n - 1))
end
cov(x::AbstractVector, y::AbstractVector, corrected::Bool) = cov(x'', y, corrected)[1]
cov(x::AbstractVector, y::AbstractVector) = cov(x'', y)[1]

function cov(x::AbstractVecOrMat, corrected::Bool)
function cov(x::AbstractVecOrMat)
n = size(x, 1)
xc = center(x)
conj(xc' * xc / (n - (corrected ? 1 : 0)))
conj(xc' * xc / (n - 1))
end
cov(x::AbstractVector, corrected::Bool) = cov(x'', corrected)[1]
cov(x::AbstractVector) = cov(x'')[1]

function cor(x::AbstractVecOrMat, y::AbstractVecOrMat, corrected::Bool)
z = cov(x, y, corrected)
function cor(x::AbstractVecOrMat, y::AbstractVecOrMat)
z = cov(x, y)
scale = Base.amap(std, x, 2) * Base.amap(std, y, 2)'
z ./ scale
end
cor(x::AbstractVector, y::AbstractVector, corrected::Bool) =
cov(x, y, corrected) / std(x) / std(y)
cor(x::AbstractVector, y::AbstractVector) =
cov(x, y) / std(x) / std(y)


function cor(x::AbstractVecOrMat, corrected::Bool)
res = cov(x, corrected)
function cor(x::AbstractVecOrMat)
res = cov(x)
n = size(res, 1)
scale = 1 / sqrt(diag(res))
for j in 1:n
Expand All @@ -195,13 +182,7 @@ function cor(x::AbstractVecOrMat, corrected::Bool)
end
res
end
cor(x::AbstractVector, corrected::Bool) = cor(x'', corrected)[1]

cov(x::AbstractVecOrMat) = cov(x, true)
cov(x::AbstractVecOrMat, y::AbstractVecOrMat) = cov(x, y, true)
cor(x::AbstractVecOrMat) = cor(x, true)
cor(x::AbstractVecOrMat, y::AbstractVecOrMat) = cor(x, y, true)

cor(x::AbstractVector) = cor(x'')[1]

## quantiles ##

Expand Down

0 comments on commit d74ad66

Please sign in to comment.