forked from pytorch/torchrec
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Migrate PS and PS binding (pytorch#868)
Summary: This PR is migrating the PS interface of tde, which could fetch and evict ids from PS to local tensor shard by a certain chunk size. After this PR, we have already migrate all the C++ part (except a high performance IDTransformer, CachelineIDTransformer) into the root folder of torchrec. Maybe we could start developing the python API around them? Thank you for your time on this PR. gently ping divchenko colin2328 reyoung Pull Request resolved: pytorch#868 Reviewed By: s4ayub Differential Revision: D41908115 Pulled By: colin2328 fbshipit-source-id: bacfb046088e9205daa36bfc0bd104b70556012c
- Loading branch information
1 parent
f35498d
commit d06112f
Showing
5 changed files
with
363 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,171 @@ | ||
/* | ||
* Copyright (c) Meta Platforms, Inc. and affiliates. | ||
* All rights reserved. | ||
* | ||
* This source code is licensed under the BSD-style license found in the | ||
* LICENSE file in the root directory of this source tree. | ||
*/ | ||
|
||
#include <torchrec/csrc/dynamic_embedding/details/io.h> | ||
#include <torchrec/csrc/dynamic_embedding/ps.h> | ||
|
||
namespace torchrec { | ||
|
||
c10::intrusive_ptr<FetchHandle> PS::fetch( | ||
torch::Tensor ids_to_fetch, | ||
int64_t time, | ||
bool reinit, | ||
double weight_init_min, | ||
double weight_init_max) { | ||
std::lock_guard<std::mutex> lock(mu_); | ||
torch::NoGradGuard no_grad; | ||
|
||
auto [local_global_ids, local_cache_ids] = filter_local_ids(ids_to_fetch); | ||
if (local_global_ids.empty()) { | ||
return c10::make_intrusive<FetchHandle>(time, c10::intrusive_ptr<PS>()); | ||
} | ||
|
||
fetch_notifications_.emplace_back(time, c10::make_intrusive<Notification>()); | ||
c10::intrusive_ptr<Notification> notification = | ||
fetch_notifications_.back().second; | ||
// Does not support multiple col ids at the moment. | ||
std::vector<int64_t> col_ids{0}; | ||
uint32_t num_os_ids = os_ids_.size(); | ||
io_.fetch( | ||
table_name_, | ||
std::move(local_global_ids), | ||
col_ids, | ||
num_os_ids, | ||
torch::kF32, | ||
[=, this, cache_ids_to_fetch = std::move(local_cache_ids)](auto&& val) { | ||
TORCH_CHECK(val.size() == cache_ids_to_fetch.size()); | ||
for (uint32_t i = 0; i < cache_ids_to_fetch.size(); ++i) { | ||
int64_t cache_id = cache_ids_to_fetch[i]; | ||
auto& fetched = val[i]; | ||
if (!fetched.defined()) { | ||
if (reinit) { | ||
std::vector<torch::Tensor> tensors = get_tensor_views(cache_id); | ||
tensors[0].uniform_(weight_init_min, weight_init_max); | ||
// optimizer states will be set to zero | ||
for (uint32_t j = 1; j < num_os_ids; ++j) { | ||
tensors[j].zero_(); | ||
} | ||
} | ||
continue; | ||
} | ||
|
||
std::vector<torch::Tensor> tensors = get_tensor_views(cache_id); | ||
for (uint32_t j = 0; j < num_os_ids; ++j) { | ||
tensors[j].copy_(fetched.slice(0, j, j + 1)); | ||
} | ||
} | ||
notification->done(); | ||
}); | ||
// `unsafe_reclain_from_nonowning` is the `instrusive_ptr` version of | ||
// `enable_shared_from_this` | ||
return c10::make_intrusive<FetchHandle>( | ||
time, c10::intrusive_ptr<PS>::unsafe_reclaim_from_nonowning(this)); | ||
} | ||
|
||
void PS::evict(torch::Tensor ids_to_evict) { | ||
std::lock_guard<std::mutex> lock(mu_); | ||
torch::NoGradGuard no_grad; | ||
// make sure all previous fetches are done. | ||
synchronize_fetch(); | ||
|
||
auto [local_global_ids, local_cache_ids] = filter_local_ids(ids_to_evict); | ||
if (local_global_ids.empty()) { | ||
return; | ||
} | ||
|
||
// Does not support multiple col ids at the moment. | ||
std::vector<int64_t> col_ids{0}; | ||
uint32_t num_os_ids = os_ids_.size(); | ||
uint32_t num_ids_to_fetch = local_global_ids.size(); | ||
|
||
Notification notification; | ||
// Done first so that the Wait after preparing the first chunk won't stuck. | ||
notification.done(); | ||
// The shared data for all chunks. | ||
std::vector<uint64_t> offsets; | ||
offsets.resize(num_ids_per_chunk_ * num_os_ids * col_ids.size() + 1); | ||
// Evict by chunks | ||
for (uint32_t i = 0; i < num_ids_to_fetch; i += num_ids_per_chunk_) { | ||
uint32_t num_ids_in_chunk = std::min( | ||
static_cast<uint32_t>(num_ids_per_chunk_), num_ids_to_fetch - i); | ||
uint32_t data_size = num_ids_in_chunk * num_os_ids * col_ids.size(); | ||
uint32_t offsets_size = num_ids_in_chunk * num_os_ids * col_ids.size() + 1; | ||
|
||
std::vector<torch::Tensor> all_tensors; | ||
for (uint32_t j = i; j < i + num_ids_in_chunk; ++j) { | ||
int64_t cache_id = local_cache_ids[j]; | ||
std::vector<torch::Tensor> tensors = get_tensor_views(cache_id); | ||
all_tensors.insert(all_tensors.end(), tensors.begin(), tensors.end()); | ||
} | ||
torch::Tensor data = torch::cat(all_tensors, 0).cpu(); | ||
TORCH_CHECK(data.numel() == data_size * col_size_); | ||
|
||
offsets[0] = 0; | ||
for (uint32_t j = 0; j < all_tensors.size(); ++j) { | ||
offsets[j + 1] = | ||
offsets[j] + all_tensors[j].numel() * all_tensors[j].element_size(); | ||
} | ||
// waiting for the Push of last chunk finishes. | ||
notification.wait(); | ||
notification.clear(); | ||
io_.push( | ||
table_name_, | ||
std::span{local_global_ids.data() + i, num_ids_in_chunk}, | ||
col_ids, | ||
os_ids_, | ||
std::span{ | ||
reinterpret_cast<uint8_t*>(data.data_ptr<float>()), | ||
data_size * sizeof(float)}, | ||
std::span{offsets.data(), offsets_size}, | ||
[¬ification] { notification.done(); }); | ||
} | ||
notification.wait(); | ||
} | ||
|
||
void PS::synchronize_fetch(int64_t time) { | ||
while (!fetch_notifications_.empty()) { | ||
auto& [t, notification] = fetch_notifications_.front(); | ||
if (t != time && time >= 0) { | ||
break; | ||
} | ||
notification->wait(); | ||
fetch_notifications_.pop_front(); | ||
} | ||
} | ||
|
||
std::vector<torch::Tensor> PS::get_tensor_views(int64_t cache_id) { | ||
for (auto& shard : *shards_) { | ||
if (shard.has(cache_id)) { | ||
return shard.get_tensor_view(cache_id); | ||
} | ||
} | ||
TORCH_CHECK(false, "all local shards do not contain cache id ", cache_id); | ||
} | ||
|
||
std::tuple<std::vector<int64_t>, std::vector<int64_t>> PS::filter_local_ids( | ||
const torch::Tensor& ids) { | ||
std::vector<int64_t> local_global_ids; | ||
std::vector<int64_t> local_cache_ids; | ||
TORCH_CHECK(ids.is_contiguous()); | ||
TORCH_CHECK(ids.dim() == 2); | ||
auto* ids_ptr = ids.data_ptr<int64_t>(); | ||
int64_t numel = ids.numel(); | ||
for (int64_t i = 0; i < numel; i += 2) { | ||
auto cache_id = ids_ptr[i + 1]; | ||
if (std::any_of(shards_->begin(), shards_->end(), [&](auto&& shard) { | ||
return shard.has(cache_id); | ||
})) { | ||
auto global_id = ids_ptr[i]; | ||
local_global_ids.emplace_back(global_id); | ||
local_cache_ids.emplace_back(cache_id); | ||
} | ||
} | ||
return {std::move(local_global_ids), std::move(local_cache_ids)}; | ||
} | ||
|
||
} // namespace torchrec |
Oops, something went wrong.