Skip to content
/ ASReP Public
forked from DyGRec/ASReP

Released code of SIGIR2021 Augmenting Sequential Recommendation with Pseudo-Prior Items via Reversely Pre-training Transformer.

Notifications You must be signed in to change notification settings

muxujie/ASReP

 
 

Repository files navigation

ASReP

This is our TensorFlow implementation for the paper: SIGIR'21 PDF . You may also find it on Arxiv

Please cite our paper if you use the code:

@inproceedings{liu2021augmenting,
  title={Augmenting Sequential Recommendation with Pseudo-Prior Items via Reversely Pre-training Transformer},
  author={Liu, Zhiwei and Fan, Ziwei and Wang, Yu and Yu, Philip S.},
  booktitle={Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval},
  year={2021}
}

Paper Abstract

Sequential Recommendation characterizes the evolving patterns by modeling item sequences chronologically. The essential target of it is to capture the item transition correlations. The recent developments of transformer inspire the community to design effective sequence encoders, \textit{e.g.,} SASRec and BERT4Rec. However, we observe that these transformer-based models suffer from the cold-start issue, \textit{i.e.,} performing poorly for short sequences. Therefore, we propose to augment short sequences while still preserving original sequential correlations. We introduce a new framework for \textbf{A}ugmenting \textbf{S}equential \textbf{Re}commendation with \textbf{P}seudo-prior items~(ASReP). We firstly pre-train a transformer with sequences in a reverse direction to predict prior items. Then, we use this transformer to generate fabricated historical items at the beginning of short sequences. Finally, we fine-tune the transformer using these augmented sequences from the time order to predict the next item. Experiments on two real-world datasets verify the effectiveness of ASReP. The code is available on this page.

Code introduction

The code is implemented based on Tensorflow version of SASRec.

Environment Setup

The code is tested under a Linux desktop (w/ GTX 1080 Ti GPU) with TensorFlow 1.12 and Python 3.6. Create the requirement with the requirements.txt

Datasets

We use the Amazon Review datasets Beauty and Cell_Phones_and_Accessories. The data split is done in the leave-one-out setting. Make sure you download the datasets from the link.

Data Preprocessing

Use the DataProcessing.py under the data/, and make sure you change the DATASET variable value to your dataset name, then you run:

python DataProcessing.py

You will find the processed dataset in the directory with the name of your input dataset.

Baby Dataset Pre-training and Prediction

Reversely Pre-training and Short Sequence Augmentation

Pre-train the model and output 20 items for sequences with length <= 20.

python main.py --dataset=Beauty --train_dir=default --lr=0.001 --hidden_units=128 --maxlen=100 --dropout_rate=0.7 --num_blocks=2 --l2_emb=0.0 --num_heads=4 --evalnegsample 100 --reversed 1 --reversed_gen_num 20 --M 20

Next-Item Prediction with Reversed-Pre-Trained Model and Augmented dataset

python main.py --dataset=Beauty --train_dir=default --lr=0.001 --hidden_units=128 --maxlen=100 --dropout_rate=0.7 --num_blocks=2 --l2_emb=0.0 --num_heads=4 --evalnegsample 100 --reversed_pretrain 1 --aug_traindata 15 --M 18

Cell_Phones_and_Accessories Dataset Pre-training and Prediction

Reversely Pre-training and Short Sequence Augmentation

Pre-train the model and output 20 items for sequences with length <= 20.

python main.py --dataset=Cell_Phones_and_Accessories --train_dir=default --lr=0.001 --hidden_units=32 --maxlen=100 --dropout_rate=0.5 --num_blocks=2 --l2_emb=0.0 --num_heads=2 --evalnegsample 100 --reversed 1 --reversed_gen_num 20 --M 20

Next-Item Prediction with Reversed-Pre-Trained Model and Augmented dataset

python main.py --dataset=Cell_Phones_and_Accessories --train_dir=default --lr=0.001 --hidden_units=32 --maxlen=100 --dropout_rate=0.5 --num_blocks=2 --l2_emb=0.0 --num_heads=2 --evalnegsample 100 --reversed_pretrain 1  --aug_traindata 17 --M 18

About

Released code of SIGIR2021 Augmenting Sequential Recommendation with Pseudo-Prior Items via Reversely Pre-training Transformer.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%