Skip to content

使用 Qwen2ForSequenceClassification 简单实现文本分类任务。

License

Notifications You must be signed in to change notification settings

muyaostudio/qwen2_seq_cls

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

qwen2_seq_cls

使用 Qwen2ForSequenceClassification 简单实现文本分类任务(本仓库实现的是 BERT/GPT2 时代接个线性层做分类的范式,不是如今常用的使用 Prompt 预测下一个 token 的范式)。

温馨提示

本仓库只是业余时间简单跑通训练和推理逻辑,比较粗糙,真实使用场景请参考 Huggingface transformers 官方比较完备的实现:

  1. https://huggingface.co/docs/transformers/tasks/sequence_classification
  2. https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_classification.py

使用说明

Qwen2 的 modeling.py 实现了分类逻辑(见最后补充说明),跟几年前用 GPT2 做 SequenceClassification 任务一样,都是把模型最后的 lm_head 替换成一个线性层预测各个类别标签的概率分布。模型会通过最后一个 token 的 hidden state 做分类。Qwen2ForSequenceClassification 实现了单标签分类和多标签分类,如果有需要,自行魔改即可。

本仓库包含三个文件:

  • train.py:训练代码,自行修改开头那些自定义参数,执行 python train.py 即可启动训练。
  • test.py:推理代码,自行修改开头路径和测试数据,执行 python test.py 即可测试。
  • data/example.jsonl:数据集,可自行替换。

后续改进

  • 兼容单标签分类和多标签分类
  • 句尾添加 special token 如 [CLS] 作为用于分类任务的标记
  • 支持多机多卡训练
  • ...

补充说明

Qwen2ForSequenceClassification 官方实现代码:

class Qwen2ForSequenceClassification(Qwen2PreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.model = Qwen2Model(config)
        self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
                sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
                sequence_lengths = sequence_lengths % input_ids.shape[-1]
                sequence_lengths = sequence_lengths.to(logits.device)
            else:
                sequence_lengths = -1

        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(pooled_logits, labels)
        if not return_dict:
            output = (pooled_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )

打印一下整个模型结构:

Qwen2ForSequenceClassification(
  (model): Qwen2Model(
    (embed_tokens): Embedding(151936, 1024, padding_idx=151643)
    (layers): ModuleList(
      (0-23): 24 x Qwen2DecoderLayer(
        (self_attn): Qwen2SdpaAttention(
          (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
          (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
          (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
          (o_proj): Linear(in_features=1024, out_features=1024, bias=False)
          (rotary_emb): Qwen2RotaryEmbedding()
        )
        (mlp): Qwen2MLP(
          (gate_proj): Linear(in_features=1024, out_features=2816, bias=False)
          (up_proj): Linear(in_features=1024, out_features=2816, bias=False)
          (down_proj): Linear(in_features=2816, out_features=1024, bias=False)
          (act_fn): SiLU()
        )
        (input_layernorm): Qwen2RMSNorm()
        (post_attention_layernorm): Qwen2RMSNorm()
      )
    )
    (norm): Qwen2RMSNorm()
  )
  (score): Linear(in_features=1024, out_features=3, bias=False)
)

About

使用 Qwen2ForSequenceClassification 简单实现文本分类任务。

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages