Skip to content

Commit

Permalink
Merge pull request numpy#5361 from JDWarner/arraypad_fixes
Browse files Browse the repository at this point in the history
ENH: Improve arg handling & enhance test suite for `np.pad`
  • Loading branch information
charris committed Jan 13, 2015
2 parents 615bcd1 + 29464a9 commit 25ee91b
Show file tree
Hide file tree
Showing 3 changed files with 580 additions and 65 deletions.
6 changes: 6 additions & 0 deletions doc/release/1.10.0-notes.rst
Original file line number Diff line number Diff line change
Expand Up @@ -93,6 +93,12 @@ given period and one end point is added to each extremity of *xp* in order to
close the previous and the next period cycles, resulting in the correct
interpolation behavior.

*np.pad* supports more input types for ``pad_width`` and ``constant_values``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
``constant_values`` parameters now accepts NumPy arrays and float values.
NumPy arrays are supported as input for ``pad_width``, and an exception is
raised if its values are not of integral type.


Changes
=======
Expand Down
134 changes: 78 additions & 56 deletions numpy/lib/arraypad.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@
from __future__ import division, absolute_import, print_function

import numpy as np
from numpy.compat import long


__all__ = ['pad']
Expand Down Expand Up @@ -47,7 +46,7 @@ def _arange_ndarray(arr, shape, axis, reverse=False):
"""
initshape = tuple(1 if i != axis else shape[axis]
for (i, x) in enumerate(arr.shape))
for (i, x) in enumerate(arr.shape))
if not reverse:
padarr = np.arange(1, shape[axis] + 1)
else:
Expand Down Expand Up @@ -779,7 +778,7 @@ def _pad_ref(arr, pad_amt, method, axis=-1):
Notes
-----
This algorithm does not pad with repetition, i.e. the edges are not
repeated in the reflection. For that behavior, use `method='symmetric'`.
repeated in the reflection. For that behavior, use `mode='symmetric'`.
The modes 'reflect', 'symmetric', and 'wrap' must be padded with a
single function, lest the indexing tricks in non-integer multiples of the
Expand Down Expand Up @@ -864,7 +863,7 @@ def _pad_sym(arr, pad_amt, method, axis=-1):
Notes
-----
This algorithm DOES pad with repetition, i.e. the edges are repeated.
For a method that does not repeat edges, use `method='reflect'`.
For padding without repeated edges, use `mode='reflect'`.
The modes 'reflect', 'symmetric', and 'wrap' must be padded with a
single function, lest the indexing tricks in non-integer multiples of the
Expand Down Expand Up @@ -987,7 +986,7 @@ def _pad_wrap(arr, pad_amt, axis=-1):
return np.concatenate((wrap_chunk1, arr, wrap_chunk2), axis=axis)


def _normalize_shape(narray, shape):
def _normalize_shape(ndarray, shape, cast_to_int=True):
"""
Private function which does some checks and normalizes the possibly
much simpler representations of 'pad_width', 'stat_length',
Expand All @@ -997,52 +996,77 @@ def _normalize_shape(narray, shape):
----------
narray : ndarray
Input ndarray
shape : {sequence, int}, optional
The width of padding (pad_width) or the number of elements on the
edge of the narray used for statistics (stat_length).
shape : {sequence, array_like, float, int}, optional
The width of padding (pad_width), the number of elements on the
edge of the narray used for statistics (stat_length), the constant
value(s) to use when filling padded regions (constant_values), or the
endpoint target(s) for linear ramps (end_values).
((before_1, after_1), ... (before_N, after_N)) unique number of
elements for each axis where `N` is rank of `narray`.
((before, after),) yields same before and after constants for each
axis.
(constant,) or int is a shortcut for before = after = constant for
(constant,) or val is a shortcut for before = after = constant for
all axes.
cast_to_int : bool, optional
Controls if values in ``shape`` will be rounded and cast to int
before being returned.
Returns
-------
_normalize_shape : tuple of tuples
int => ((int, int), (int, int), ...)
[[int1, int2], [int3, int4], ...] => ((int1, int2), (int3, int4), ...)
((int1, int2), (int3, int4), ...) => no change
[[int1, int2], ] => ((int1, int2), (int1, int2), ...)
((int1, int2), ) => ((int1, int2), (int1, int2), ...)
[[int , ], ] => ((int, int), (int, int), ...)
((int , ), ) => ((int, int), (int, int), ...)
normalized_shape : tuple of tuples
val => ((val, val), (val, val), ...)
[[val1, val2], [val3, val4], ...] => ((val1, val2), (val3, val4), ...)
((val1, val2), (val3, val4), ...) => no change
[[val1, val2], ] => ((val1, val2), (val1, val2), ...)
((val1, val2), ) => ((val1, val2), (val1, val2), ...)
[[val , ], ] => ((val, val), (val, val), ...)
((val , ), ) => ((val, val), (val, val), ...)
"""
normshp = None
shapelen = len(np.shape(narray))
if (isinstance(shape, int)) or shape is None:
normshp = ((shape, shape), ) * shapelen
elif (isinstance(shape, (tuple, list))
and isinstance(shape[0], (tuple, list))
and len(shape) == shapelen):
normshp = shape
for i in normshp:
if len(i) != 2:
fmt = "Unable to create correctly shaped tuple from %s"
raise ValueError(fmt % (normshp,))
elif (isinstance(shape, (tuple, list))
and isinstance(shape[0], (int, float, long))
and len(shape) == 1):
normshp = ((shape[0], shape[0]), ) * shapelen
elif (isinstance(shape, (tuple, list))
and isinstance(shape[0], (int, float, long))
and len(shape) == 2):
normshp = (shape, ) * shapelen
if normshp is None:
ndims = ndarray.ndim

# Shortcut shape=None
if shape is None:
return ((None, None), ) * ndims

# Convert any input `info` to a NumPy array
arr = np.asarray(shape)

# Switch based on what input looks like
if arr.ndim <= 1:
if arr.shape == () or arr.shape == (1,):
# Single scalar input
# Create new array of ones, multiply by the scalar
arr = np.ones((ndims, 2), dtype=ndarray.dtype) * arr
elif arr.shape == (2,):
# Apply padding (before, after) each axis
# Create new axis 0, repeat along it for every axis
arr = arr[np.newaxis, :].repeat(ndims, axis=0)
else:
fmt = "Unable to create correctly shaped tuple from %s"
raise ValueError(fmt % (shape,))

elif arr.ndim == 2:
if arr.shape[1] == 1 and arr.shape[0] == ndims:
# Padded before and after by the same amount
arr = arr.repeat(2, axis=1)
elif arr.shape[0] == ndims:
# Input correctly formatted, pass it on as `arr`
arr = shape
else:
fmt = "Unable to create correctly shaped tuple from %s"
raise ValueError(fmt % (shape,))

else:
fmt = "Unable to create correctly shaped tuple from %s"
raise ValueError(fmt % (shape,))
return normshp

# Cast if necessary
if cast_to_int is True:
arr = np.round(arr).astype(int)

# Convert list of lists to tuple of tuples
return tuple(tuple(axis) for axis in arr.tolist())


def _validate_lengths(narray, number_elements):
Expand Down Expand Up @@ -1098,7 +1122,7 @@ def pad(array, pad_width, mode=None, **kwargs):
----------
array : array_like of rank N
Input array
pad_width : {sequence, int}
pad_width : {sequence, array_like, int}
Number of values padded to the edges of each axis.
((before_1, after_1), ... (before_N, after_N)) unique pad widths
for each axis.
Expand Down Expand Up @@ -1227,13 +1251,13 @@ def pad(array, pad_width, mode=None, **kwargs):
Examples
--------
>>> a = [1, 2, 3, 4, 5]
>>> np.lib.pad(a, (2,3), 'constant', constant_values=(4,6))
>>> np.lib.pad(a, (2,3), 'constant', constant_values=(4, 6))
array([4, 4, 1, 2, 3, 4, 5, 6, 6, 6])
>>> np.lib.pad(a, (2,3), 'edge')
>>> np.lib.pad(a, (2, 3), 'edge')
array([1, 1, 1, 2, 3, 4, 5, 5, 5, 5])
>>> np.lib.pad(a, (2,3), 'linear_ramp', end_values=(5,-4))
>>> np.lib.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4))
array([ 5, 3, 1, 2, 3, 4, 5, 2, -1, -4])
>>> np.lib.pad(a, (2,), 'maximum')
Expand All @@ -1245,7 +1269,7 @@ def pad(array, pad_width, mode=None, **kwargs):
>>> np.lib.pad(a, (2,), 'median')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])
>>> a = [[1,2], [3,4]]
>>> a = [[1, 2], [3, 4]]
>>> np.lib.pad(a, ((3, 2), (2, 3)), 'minimum')
array([[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
Expand All @@ -1256,19 +1280,19 @@ def pad(array, pad_width, mode=None, **kwargs):
[1, 1, 1, 2, 1, 1, 1]])
>>> a = [1, 2, 3, 4, 5]
>>> np.lib.pad(a, (2,3), 'reflect')
>>> np.lib.pad(a, (2, 3), 'reflect')
array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2])
>>> np.lib.pad(a, (2,3), 'reflect', reflect_type='odd')
>>> np.lib.pad(a, (2, 3), 'reflect', reflect_type='odd')
array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8])
>>> np.lib.pad(a, (2,3), 'symmetric')
>>> np.lib.pad(a, (2, 3), 'symmetric')
array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3])
>>> np.lib.pad(a, (2,3), 'symmetric', reflect_type='odd')
>>> np.lib.pad(a, (2, 3), 'symmetric', reflect_type='odd')
array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7])
>>> np.lib.pad(a, (2,3), 'wrap')
>>> np.lib.pad(a, (2, 3), 'wrap')
array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3])
>>> def padwithtens(vector, pad_width, iaxis, kwargs):
Expand All @@ -1277,7 +1301,7 @@ def pad(array, pad_width, mode=None, **kwargs):
... return vector
>>> a = np.arange(6)
>>> a = a.reshape((2,3))
>>> a = a.reshape((2, 3))
>>> np.lib.pad(a, 2, padwithtens)
array([[10, 10, 10, 10, 10, 10, 10],
Expand All @@ -1287,6 +1311,8 @@ def pad(array, pad_width, mode=None, **kwargs):
[10, 10, 10, 10, 10, 10, 10],
[10, 10, 10, 10, 10, 10, 10]])
"""
if not np.asarray(pad_width).dtype.kind == 'i':
raise TypeError('`pad_width` must be of integral type.')

narray = np.array(array)
pad_width = _validate_lengths(narray, pad_width)
Expand Down Expand Up @@ -1327,7 +1353,8 @@ def pad(array, pad_width, mode=None, **kwargs):
if i == 'stat_length':
kwargs[i] = _validate_lengths(narray, kwargs[i])
if i in ['end_values', 'constant_values']:
kwargs[i] = _normalize_shape(narray, kwargs[i])
kwargs[i] = _normalize_shape(narray, kwargs[i],
cast_to_int=False)
elif mode is None:
raise ValueError('Keyword "mode" must be a function or one of %s.' %
(list(allowedkwargs.keys()),))
Expand Down Expand Up @@ -1420,18 +1447,13 @@ def pad(array, pad_width, mode=None, **kwargs):
method = kwargs['reflect_type']
safe_pad = newmat.shape[axis] - 1
while ((pad_before > safe_pad) or (pad_after > safe_pad)):
offset = 0
pad_iter_b = min(safe_pad,
safe_pad * (pad_before // safe_pad))
pad_iter_a = min(safe_pad, safe_pad * (pad_after // safe_pad))
newmat = _pad_ref(newmat, (pad_iter_b,
pad_iter_a), method, axis)
pad_before -= pad_iter_b
pad_after -= pad_iter_a
if pad_iter_b > 0:
offset += 1
if pad_iter_a > 0:
offset += 1
safe_pad += pad_iter_b + pad_iter_a
newmat = _pad_ref(newmat, (pad_before, pad_after), method, axis)

Expand Down
Loading

0 comments on commit 25ee91b

Please sign in to comment.