Skip to content

mwelz/robcat

Repository files navigation

robcat: Robust Categorical Data Analysis

This package implements the methodology proposed in the working paper Robust Estimation and Inference in Categorical Data by Welz (2024). Here we will demonstrate how the methodology can be used to robustly estimate polychoric correlation, which is described in detail in our companion paper Robust Estimation of Polychoric Correlation by Welz, Mair, and Alfons (2024).

To install the latest development version from GitHub, you can pull this repository and install it from the R command line via

install.packages("devtools")
devtools::install_github("mwelz/robcat")

If you already have the package devtools installed, you can skip the first line.

Example of robust estimation of polychoric correlation coefficient

Generate simulated data

library("robcat")

## 5 answer categories each, define latent thresholds as follows
Kx <- Ky <- 5
thresX <- c(-Inf, -1.5, -1, -0.25, 0.75, Inf)
thresY <- c(-Inf, -1.5, -1, 0.5, 1.5, Inf)
rho_true <- 0.3 # true polychoric correlation

## simulate rating data
set.seed(20240111)
latent <- mvtnorm::rmvnorm(1000, c(0, 0), matrix(c(1, rho_true, rho_true, 1), 2, 2))
xi <- latent[,1]
eta <- latent[,2]
x <- as.integer(cut(xi, thresX))
y <- as.integer(cut(eta, thresY))

Compare MLE and robust estimator without contamination

## MLE
mle <- polycor_mle(x = x, y = y)
mle$thetahat 
# > mle$thetahat
#       rho         a1         a2         a3         a4         b1         b2         b3         b4 
# 0.3151109 -1.4868862 -0.9829336 -0.2318141  0.7887485 -1.5112743 -0.9889993  0.4276572  1.4582239 

## robust
polycor <- polycor(x = x, y = y)
polycor$thetahat
# > polycor$thetahat
#       rho         a1         a2         a3         a4         b1         b2         b3         b4 
# 0.3151731 -1.4867730 -0.9828117 -0.2317529  0.7887506 -1.5110644 -0.9888898  0.4276510  1.4583212 

Thus, in the absence of contamination, both estimators yield equivalent solutions. Next, we introduce 20% contamination.

Compare MLE and robust estimator with contamination

## replace 20% of observations with negative leverage points
x[1:200] <- 1
y[1:200] <- Ky

## MLE
mle <- polycor_mle(x = x, y = y)
mle$thetahat 
# > mle$thetahat
#         rho          a1          a2          a3          a4          b1          b2          b3          b4 
# -0.34675954 -0.63244517 -0.39741400  0.10278048  0.93030935 -1.57214524 -1.12479616  0.03080319  0.63796166 

## robust
polycor <- polycor(x = x, y = y)
polycor$thetahat
# > polycor$thetahat
#       rho         a1         a2         a3         a4         b1         b2         b3         b4 
# 0.3170347 -1.4412686 -0.9580768 -0.2337379  0.7789224 -1.5291725 -0.9982777  0.4074513  1.4534537

We see that 20% contamination leads to a substantial bias in the MLE, whereas the robust estimator is still accurate. The package also provides methods for printing and plotting:

## print and plot method
polycor
# > polycor
# 
# Polychoric Correlation
# Estimate Std.Err.
# rho    0.317  0.03892
# 
# X-thresholds
#     Estimate Std.Err.
# a1  -1.4410  0.06601
# a2  -0.9581  0.05252
# a3  -0.2337  0.04446
# a4   0.7789  0.04958
# 
# Y-thresholds
#     Estimate Std.Err.
# b1  -1.5290  0.06921
# b2  -0.9983  0.05308
# b3   0.4075  0.04536
# b4   1.4530  0.06761

plot(polycor)

Indeed, the Pearson residual of contaminated cell (x,y) = (1,5) is excessively large compared to the others, which are all around the value 0.

Authors

Max Welz ([email protected])

Releases

No releases published

Packages

No packages published