Skip to content
/ DAN Public
forked from greatlog/DAN

This is an official implementation of Unfolding the Alternating Optimization for Blind Super Resolution

Notifications You must be signed in to change notification settings

myeldib/DAN

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This is an official implementation of Unfolding the Alternating Optimization for Blind Super Resolution and End-to-end Alternating Optimization for Blind Super Resolution

If this repo works for you, please cite our papers:

@article{luo2020unfolding,
  title={Unfolding the Alternating Optimization for Blind Super Resolution},
  author={Luo, Zhengxiong and Huang, Yan and Li, Shang and Wang, Liang and Tan, Tieniu},
  journal={Advances in Neural Information Processing Systems (NeurIPS)},
  volume={33},
  year={2020}
}
@misc{luo2021endtoend,
      title={End-to-end Alternating Optimization for Blind Super Resolution}, 
      author={Zhengxiong Luo and Yan Huang and Shang Li and Liang Wang and Tieniu Tan},
      year={2021},
      eprint={2105.06878},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

This repo is build on the basis of [MMSR] and [IKC]

News

  • Add more pretrained weights and update the results of DANv1 !

  • Add pretrained weights and update the results of about [IKC]!

  • Add DANv2 !!!

Main Results

Results about Setting 1

Method Scale Set5 Set5 Set14 Set14 B100 B100 Urban100 Urban100 Mangan109 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
IKC x2 37.19 0.9526 32.94 0.9024 31.51 0.8790 29.85 0.8928 36.93 0.9667
DANv1 x2 37.34 0.9526 33.08 0.9041 31.76 0.8858 30.60 0.9060 37.23 0.9710
DANv2 x2 37.60 0.9544 33.44 0.9094 32.00 0.8904 31.43 0.9174 38.07 0.9734
IKC x3 33.06 0.9146 29.38 0.8233 28.53 0.7899 27.43 0.8302 32.43 0.9316
DANv1 x3 34.04 0.9199 30.09 0.8287 28.94 0.7919 27.65 0.8352 33.16 0.9382
DANv2 x3 34.19 0.9209 30.20 0.8309 29.03 0.7948 27.83 0.8395 33.28 0.9400
IKC x4 31.67 0.8829 28.31 0.7643 27.37 0.7192 25.33 0.7504 28.91 0.8782
DANv1 x4 31.89 0.8864 28.42 0.7687 27.51 0.7248 25.86 0.7721 30.50 0.9037
DANv2 x4 32.00 0.8885 28.50 0.7715 27.56 0.7277 25.94 0.7748 30.45 0.9037

Results about Setting 2 (DIV2KRK)

Method x2 x2 x4 x4
PSNR SSIM PSNR SSIM
KernelGAN + ZSSR 30.36 0.8669 26.81 0.7316
DANv1 32.56 0.8997 27.55 0.7582
DANv2 32.58 0.9048 28.74 0.7893

Dependenices

  • python3
  • pytorch >= 1.5
  • NVIDIA GPU + CUDA
  • Python packages: pip3 install numpy opencv-python lmdb pyyaml

Pretrained Weights

Pretrained weights of DANv1 and IKC are available at BaiduYun(Password: cbjv) or GoogleDrive. Download the weights to checkpoints

.
|-- checkpoints
`-- |-- DANv1
    |   |-- ...
    |-- DANv2
    |   |-- ...
    `--IKC
        |-- ... 

Dataset Preparation

We use DIV2K and Flickr2K as our training datasets.

For evaluation of Setting 1, we use five datasets, i.e., Set5, Set14, Urban100, BSD100 and Manga109.

We use DIV2KRK for evaluation of Setting 2.

To train a model on the full dataset(DIV2K+Flickr2K, totally 3450 images), download datasets from official websites. After download, run codes/scripts/generate_mod_blur_LR_bic.py to generate LRblur/LR/HR/Bicubic datasets paths. (You need to modify the file paths by yourself.)

python3 codes/scripts/generate_mod_blur_LR_bic.py

For efficient IO, run codes/scripts/create_lmdb.py to transform datasets to binary files. (You need to modify the file paths by yourself.)

python3 codes/scripts/create_lmdb.py

Train

For single GPU:

cd codes/config/DANv1
python3 train.py -opt=options/setting1/train_setting1_x4.yml

For distributed training

cd codes/config/DANv1
python3 -m torch.distributed.launch --nproc_per_node=8 --master_poer=4321 train.py -opt=options/setting1/train_setting1_x4.yml --launcher pytorch

Test on Synthetic Images

cd codes/config/DANv1
python3 test.py -opt=options/setting1/test_setting1_x4.yml

Test on Real Images

cd codes/config/DANv1
python3 inference.py -input_dir=/path/to/real/images/ -output_dir=/path/to/save/sr/results/

About

This is an official implementation of Unfolding the Alternating Optimization for Blind Super Resolution

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 97.5%
  • MATLAB 2.5%