-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 8503a1d
Showing
9 changed files
with
1,743 additions
and
0 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
"""CIFAR-10 data set. | ||
See http://www.cs.toronto.edu/~kriz/cifar.html. | ||
""" | ||
import os | ||
|
||
import tensorflow as tf | ||
|
||
HEIGHT = 32 | ||
WIDTH = 32 | ||
DEPTH = 3 | ||
|
||
|
||
class Cifar10DataSet(object): | ||
"""Cifar10 data set. | ||
Described by http://www.cs.toronto.edu/~kriz/cifar.html. | ||
""" | ||
|
||
def __init__(self, data_dir, subset='train', use_distortion=True): | ||
self.data_dir = data_dir | ||
self.subset = subset | ||
self.use_distortion = use_distortion | ||
|
||
def get_filenames(self): | ||
if self.subset in ['train', 'validation', 'eval']: | ||
return [os.path.join(self.data_dir, self.subset + '.tfrecords')] | ||
else: | ||
raise ValueError('Invalid data subset "%s"' % self.subset) | ||
|
||
def parser(self, serialized_example): | ||
"""Parses a single tf.Example into image and label tensors.""" | ||
# Dimensions of the images in the CIFAR-10 dataset. | ||
# See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the | ||
# input format. | ||
features = tf.parse_single_example( | ||
serialized_example, | ||
features={ | ||
'image': tf.FixedLenFeature([], tf.string), | ||
'label': tf.FixedLenFeature([], tf.int64), | ||
}) | ||
image = tf.decode_raw(features['image'], tf.uint8) | ||
image.set_shape([DEPTH * HEIGHT * WIDTH]) | ||
|
||
# Reshape from [depth * height * width] to [depth, height, width]. | ||
image = tf.cast( | ||
tf.transpose(tf.reshape(image, [DEPTH, HEIGHT, WIDTH]), [1, 2, 0]), | ||
tf.float32) | ||
label = tf.cast(features['label'], tf.int32) | ||
|
||
# Custom preprocessing. | ||
image = self.preprocess(image) | ||
|
||
return image, label | ||
|
||
def make_batch(self, batch_size): | ||
"""Read the images and labels from 'filenames'.""" | ||
filenames = self.get_filenames() | ||
# Repeat infinitely. | ||
dataset = tf.data.TFRecordDataset(filenames).repeat() | ||
|
||
# Parse records. | ||
dataset = dataset.map( | ||
self.parser, num_parallel_calls=batch_size) | ||
|
||
# Potentially shuffle records. | ||
if self.subset == 'train': | ||
min_queue_examples = int( | ||
Cifar10DataSet.num_examples_per_epoch(self.subset) * 0.4) | ||
# Ensure that the capacity is sufficiently large to provide good random | ||
# shuffling. | ||
dataset = dataset.shuffle(buffer_size=min_queue_examples + 3 * batch_size) | ||
|
||
# Batch it up. | ||
dataset = dataset.batch(batch_size) | ||
iterator = dataset.make_one_shot_iterator() | ||
image_batch, label_batch = iterator.get_next() | ||
|
||
return image_batch, label_batch | ||
|
||
def preprocess(self, image): | ||
"""Preprocess a single image in [height, width, depth] layout.""" | ||
if self.subset == 'train' and self.use_distortion: | ||
# Pad 4 pixels on each dimension of feature map, done in mini-batch | ||
image = tf.image.resize_image_with_crop_or_pad(image, 40, 40) | ||
image = tf.random_crop(image, [HEIGHT, WIDTH, DEPTH]) | ||
image = tf.image.random_flip_left_right(image) | ||
return image | ||
|
||
@staticmethod | ||
def num_examples_per_epoch(subset='train'): | ||
if subset == 'train': | ||
return 45000 | ||
elif subset == 'validation': | ||
return 5000 | ||
elif subset == 'eval': | ||
return 10000 | ||
else: | ||
raise ValueError('Invalid data subset "%s"' % subset) |
Oops, something went wrong.