Skip to content

Commit

Permalink
add proposed parallel vit from facebook ai for exploration purposes
Browse files Browse the repository at this point in the history
  • Loading branch information
lucidrains committed Mar 23, 2022
1 parent c2b2db2 commit 2aae406
Show file tree
Hide file tree
Showing 4 changed files with 179 additions and 1 deletion.
41 changes: 41 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@
- [Adaptive Token Sampling](#adaptive-token-sampling)
- [Patch Merger](#patch-merger)
- [Vision Transformer for Small Datasets](#vision-transformer-for-small-datasets)
- [Parallel ViT](#parallel-vit)
- [Dino](#dino)
- [Accessing Attention](#accessing-attention)
- [Research Ideas](#research-ideas)
Expand Down Expand Up @@ -240,6 +241,7 @@ preds = v(img) # (1, 1000)
```

## CCT

<img src="https://raw.githubusercontent.com/SHI-Labs/Compact-Transformers/main/images/model_sym.png" width="400px"></img>

<a href="https://arxiv.org/abs/2104.05704">CCT</a> proposes compact transformers
Expand Down Expand Up @@ -866,6 +868,37 @@ img = torch.randn(4, 3, 256, 256)
tokens = spt(img) # (4, 256, 1024)
```

## Parallel ViT

<img src="./images/parallel-vit.png" width="350px"></img>

This <a href="https://arxiv.org/abs/2203.09795">paper</a> propose parallelizing multiple attention and feedforward blocks per layer (2 blocks), claiming that it is easier to train without loss of performance.

You can try this variant as follows

```python
import torch
from vit_pytorch.parallel_vit import ViT

v = ViT(
image_size = 256,
patch_size = 16,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 8,
mlp_dim = 2048,
num_parallel_branches = 2, # in paper, they claimed 2 was optimal
dropout = 0.1,
emb_dropout = 0.1
)

img = torch.randn(4, 3, 256, 256)

preds = v(img) # (4, 1000)
```


## Dino

<img src="./images/dino.png" width="350px"></img>
Expand Down Expand Up @@ -1396,6 +1429,14 @@ Coming from computer vision and new to transformers? Here are some resources tha
}
```

```bibtex
@inproceedings{Touvron2022ThreeTE,
title = {Three things everyone should know about Vision Transformers},
author = {Hugo Touvron and Matthieu Cord and Alaaeldin El-Nouby and Jakob Verbeek and Herv'e J'egou},
year = {2022}
}
```

```bibtex
@misc{vaswani2017attention,
title = {Attention Is All You Need},
Expand Down
Binary file added images/parallel-vit.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
setup(
name = 'vit-pytorch',
packages = find_packages(exclude=['examples']),
version = '0.28.2',
version = '0.29.0',
license='MIT',
description = 'Vision Transformer (ViT) - Pytorch',
author = 'Phil Wang',
Expand Down
137 changes: 137 additions & 0 deletions vit_pytorch/parallel_vit.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,137 @@
import torch
from torch import nn

from einops import rearrange, repeat
from einops.layers.torch import Rearrange

# helpers

def pair(t):
return t if isinstance(t, tuple) else (t, t)

# classes

class Parallel(nn.Module):
def __init__(self, *fns):
super().__init__()
self.fns = nn.ModuleList(fns)

def forward(self, x):
return sum([fn(x) for fn in self.fns])

class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)

class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)

class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)

self.heads = heads
self.scale = dim_head ** -0.5

self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)

self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()

def forward(self, x):
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)

dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale

attn = self.attend(dots)

out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)

class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, num_parallel_branches = 2, dropout = 0.):
super().__init__()
self.layers = nn.ModuleList([])

attn_block = lambda: PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout))
ff_block = lambda: PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))

for _ in range(depth):
self.layers.append(nn.ModuleList([
Parallel(*[attn_block() for _ in range(num_parallel_branches)]),
Parallel(*[ff_block() for _ in range(num_parallel_branches)]),
]))

def forward(self, x):
for attns, ffs in self.layers:
x = attns(x) + x
x = ffs(x) + x
return x

class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', num_parallel_branches = 2, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)

assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'

num_patches = (image_height // patch_height) * (image_width // patch_width)
patch_dim = channels * patch_height * patch_width
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'

self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
nn.Linear(patch_dim, dim),
)

self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)

self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, num_parallel_branches, dropout)

self.pool = pool
self.to_latent = nn.Identity()

self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)

def forward(self, img):
x = self.to_patch_embedding(img)
b, n, _ = x.shape

cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding[:, :(n + 1)]
x = self.dropout(x)

x = self.transformer(x)

x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]

x = self.to_latent(x)
return self.mlp_head(x)

0 comments on commit 2aae406

Please sign in to comment.