forked from lucidrains/vit-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add Masked Position Prediction (lucidrains#260)
* Create mp3.py * Implementation: Position Prediction as an Effective Pretraining Strategy * Added description for Masked Position Prediction * MP3 image added
- Loading branch information
Showing
3 changed files
with
171 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
import torch | ||
from torch import nn, einsum | ||
import torch.nn.functional as F | ||
|
||
from einops import rearrange, repeat | ||
from einops.layers.torch import Rearrange | ||
|
||
# helpers | ||
|
||
def pair(t): | ||
return t if isinstance(t, tuple) else (t, t) | ||
|
||
# pre-layernorm | ||
|
||
class PreNorm(nn.Module): | ||
def __init__(self, dim, fn): | ||
super().__init__() | ||
self.norm = nn.LayerNorm(dim) | ||
self.fn = fn | ||
def forward(self, x, **kwargs): | ||
return self.fn(self.norm(x), **kwargs) | ||
|
||
class FeedForward(nn.Module): | ||
def __init__(self, dim, hidden_dim, dropout = 0.): | ||
super().__init__() | ||
self.net = nn.Sequential( | ||
nn.Linear(dim, hidden_dim), | ||
nn.GELU(), | ||
nn.Dropout(dropout), | ||
nn.Linear(hidden_dim, dim), | ||
nn.Dropout(dropout) | ||
) | ||
def forward(self, x): | ||
return self.net(x) | ||
|
||
# cross attention | ||
|
||
class CrossAttention(nn.Module): | ||
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): | ||
super().__init__() | ||
inner_dim = dim_head * heads | ||
self.heads = heads | ||
self.scale = dim_head ** -0.5 | ||
|
||
self.attend = nn.Softmax(dim = -1) | ||
self.dropout = nn.Dropout(dropout) | ||
|
||
self.to_q = nn.Linear(dim, inner_dim, bias = False) | ||
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False) | ||
|
||
self.to_out = nn.Sequential( | ||
nn.Linear(inner_dim, dim), | ||
nn.Dropout(dropout) | ||
) | ||
|
||
def forward(self, x, context): | ||
b, n, _, h = *x.shape, self.heads | ||
|
||
qkv = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1)) | ||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv) | ||
|
||
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale | ||
|
||
attn = self.attend(dots) | ||
attn = self.dropout(attn) | ||
|
||
out = einsum('b h i j, b h j d -> b h i d', attn, v) | ||
out = rearrange(out, 'b h n d -> b n (h d)') | ||
return self.to_out(out) | ||
|
||
class Transformer(nn.Module): | ||
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): | ||
super().__init__() | ||
self.layers = nn.ModuleList([]) | ||
for _ in range(depth): | ||
self.layers.append(nn.ModuleList([ | ||
PreNorm(dim, CrossAttention(dim, heads = heads, dim_head = dim_head, dropout = dropout)), | ||
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)) | ||
])) | ||
def forward(self, x, context): | ||
for attn, ff in self.layers: | ||
x = attn(x, context=context) + x | ||
x = ff(x) + x | ||
return x | ||
|
||
# Masked Position Prediction Pre-Training | ||
|
||
class MP3(nn.Module): | ||
def __init__(self, *, image_size, patch_size, masking_ratio, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, dropout = 0.): | ||
super().__init__() | ||
image_height, image_width = pair(image_size) | ||
patch_height, patch_width = pair(patch_size) | ||
|
||
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' | ||
|
||
assert masking_ratio > 0 and masking_ratio < 1, 'masking ratio must be kept between 0 and 1' | ||
self.masking_ratio = masking_ratio | ||
|
||
num_patches = (image_height // patch_height) * (image_width // patch_width) | ||
patch_dim = channels * patch_height * patch_width | ||
|
||
self.to_patch_embedding = nn.Sequential( | ||
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width), | ||
nn.LayerNorm(patch_dim), | ||
nn.Linear(patch_dim, dim), | ||
nn.LayerNorm(dim), | ||
) | ||
|
||
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) | ||
|
||
self.mlp_head = nn.Sequential( | ||
nn.LayerNorm(dim), | ||
nn.Linear(dim, num_patches) | ||
) | ||
self.out = nn.Softmax(dim = -1) | ||
|
||
def forward(self, img): | ||
device = img.device | ||
tokens = self.to_patch_embedding(img) | ||
batch, num_patches, *_ = tokens.shape | ||
|
||
# Masking | ||
num_masked = int(self.masking_ratio * num_patches) | ||
rand_indices = torch.rand(batch, num_patches, device = device).argsort(dim = -1) | ||
masked_indices, unmasked_indices = rand_indices[:, :num_masked], rand_indices[:, num_masked:] | ||
|
||
batch_range = torch.arange(batch, device = device)[:, None] | ||
tokens_unmasked = tokens[batch_range, unmasked_indices] | ||
|
||
x = rearrange(self.mlp_head(self.transformer(tokens, tokens_unmasked)), 'b n d -> (b n) d') | ||
x = self.out(x) | ||
|
||
# Define labels | ||
labels = repeat(torch.arange(num_patches, device = device), 'n -> b n', b = batch).flatten() | ||
loss = F.cross_entropy(x, labels) | ||
|
||
return loss |