forked from lucidrains/vit-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
need simple vit with patch dropout for another project
- Loading branch information
1 parent
89e1996
commit 500e231
Showing
2 changed files
with
142 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,141 @@ | ||
import torch | ||
from torch import nn | ||
|
||
from einops import rearrange | ||
from einops.layers.torch import Rearrange | ||
|
||
# helpers | ||
|
||
def pair(t): | ||
return t if isinstance(t, tuple) else (t, t) | ||
|
||
def posemb_sincos_2d(patches, temperature = 10000, dtype = torch.float32): | ||
_, h, w, dim, device, dtype = *patches.shape, patches.device, patches.dtype | ||
|
||
y, x = torch.meshgrid(torch.arange(h, device = device), torch.arange(w, device = device), indexing = 'ij') | ||
assert (dim % 4) == 0, 'feature dimension must be multiple of 4 for sincos emb' | ||
omega = torch.arange(dim // 4, device = device) / (dim // 4 - 1) | ||
omega = 1. / (temperature ** omega) | ||
|
||
y = y.flatten()[:, None] * omega[None, :] | ||
x = x.flatten()[:, None] * omega[None, :] | ||
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim = 1) | ||
return pe.type(dtype) | ||
|
||
# patch dropout | ||
|
||
class PatchDropout(nn.Module): | ||
def __init__(self, prob): | ||
super().__init__() | ||
assert 0 <= prob < 1. | ||
self.prob = prob | ||
|
||
def forward(self, x): | ||
if not self.training or self.prob == 0.: | ||
return x | ||
|
||
b, n, _, device = *x.shape, x.device | ||
|
||
batch_indices = torch.arange(b, device = device) | ||
batch_indices = rearrange(batch_indices, '... -> ... 1') | ||
num_patches_keep = max(1, int(n * (1 - self.prob))) | ||
patch_indices_keep = torch.randn(b, n, device = device).topk(num_patches_keep, dim = -1).indices | ||
|
||
return x[batch_indices, patch_indices_keep] | ||
|
||
# classes | ||
|
||
class FeedForward(nn.Module): | ||
def __init__(self, dim, hidden_dim): | ||
super().__init__() | ||
self.net = nn.Sequential( | ||
nn.LayerNorm(dim), | ||
nn.Linear(dim, hidden_dim), | ||
nn.GELU(), | ||
nn.Linear(hidden_dim, dim), | ||
) | ||
def forward(self, x): | ||
return self.net(x) | ||
|
||
class Attention(nn.Module): | ||
def __init__(self, dim, heads = 8, dim_head = 64): | ||
super().__init__() | ||
inner_dim = dim_head * heads | ||
self.heads = heads | ||
self.scale = dim_head ** -0.5 | ||
self.norm = nn.LayerNorm(dim) | ||
|
||
self.attend = nn.Softmax(dim = -1) | ||
|
||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) | ||
self.to_out = nn.Linear(inner_dim, dim, bias = False) | ||
|
||
def forward(self, x): | ||
x = self.norm(x) | ||
|
||
qkv = self.to_qkv(x).chunk(3, dim = -1) | ||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) | ||
|
||
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale | ||
|
||
attn = self.attend(dots) | ||
|
||
out = torch.matmul(attn, v) | ||
out = rearrange(out, 'b h n d -> b n (h d)') | ||
return self.to_out(out) | ||
|
||
class Transformer(nn.Module): | ||
def __init__(self, dim, depth, heads, dim_head, mlp_dim): | ||
super().__init__() | ||
self.layers = nn.ModuleList([]) | ||
for _ in range(depth): | ||
self.layers.append(nn.ModuleList([ | ||
Attention(dim, heads = heads, dim_head = dim_head), | ||
FeedForward(dim, mlp_dim) | ||
])) | ||
def forward(self, x): | ||
for attn, ff in self.layers: | ||
x = attn(x) + x | ||
x = ff(x) + x | ||
return x | ||
|
||
class SimpleViT(nn.Module): | ||
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, patch_dropout = 0.5): | ||
super().__init__() | ||
image_height, image_width = pair(image_size) | ||
patch_height, patch_width = pair(patch_size) | ||
|
||
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' | ||
|
||
num_patches = (image_height // patch_height) * (image_width // patch_width) | ||
patch_dim = channels * patch_height * patch_width | ||
|
||
self.to_patch_embedding = nn.Sequential( | ||
Rearrange('b c (h p1) (w p2) -> b h w (p1 p2 c)', p1 = patch_height, p2 = patch_width), | ||
nn.Linear(patch_dim, dim), | ||
) | ||
|
||
self.patch_dropout = PatchDropout(patch_dropout) | ||
|
||
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim) | ||
|
||
self.to_latent = nn.Identity() | ||
self.linear_head = nn.Sequential( | ||
nn.LayerNorm(dim), | ||
nn.Linear(dim, num_classes) | ||
) | ||
|
||
def forward(self, img): | ||
*_, h, w, dtype = *img.shape, img.dtype | ||
|
||
x = self.to_patch_embedding(img) | ||
pe = posemb_sincos_2d(x) | ||
x = rearrange(x, 'b ... d -> b (...) d') + pe | ||
|
||
x = self.patch_dropout(x) | ||
|
||
x = self.transformer(x) | ||
x = x.mean(dim = 1) | ||
|
||
x = self.to_latent(x) | ||
return self.linear_head(x) |