forked from lucidrains/vit-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add CaiT, new vision transformer out of facebook AI, complete with la…
…yerscale, talking heads, and cls -> patch cross attention
- Loading branch information
1 parent
506fcf8
commit 9ef8da4
Showing
4 changed files
with
187 additions
and
8 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,148 @@ | ||
import torch | ||
from torch import nn, einsum | ||
import torch.nn.functional as F | ||
|
||
from einops import rearrange, repeat | ||
from einops.layers.torch import Rearrange | ||
|
||
# helpers | ||
|
||
def exists(val): | ||
return val is not None | ||
|
||
# classes | ||
|
||
class LayerScale(nn.Module): | ||
def __init__(self, dim, fn, init_eps = 0.1): | ||
super().__init__() | ||
scale = torch.zeros(1, 1, dim).fill_(init_eps) | ||
self.scale = nn.Parameter(scale) | ||
self.fn = fn | ||
def forward(self, x, **kwargs): | ||
return self.fn(x, **kwargs) * self.scale | ||
|
||
class PreNorm(nn.Module): | ||
def __init__(self, dim, fn): | ||
super().__init__() | ||
self.norm = nn.LayerNorm(dim) | ||
self.fn = fn | ||
def forward(self, x, **kwargs): | ||
return self.fn(self.norm(x), **kwargs) | ||
|
||
class FeedForward(nn.Module): | ||
def __init__(self, dim, hidden_dim, dropout = 0.): | ||
super().__init__() | ||
self.net = nn.Sequential( | ||
nn.Linear(dim, hidden_dim), | ||
nn.GELU(), | ||
nn.Dropout(dropout), | ||
nn.Linear(hidden_dim, dim), | ||
nn.Dropout(dropout) | ||
) | ||
def forward(self, x): | ||
return self.net(x) | ||
|
||
class Attention(nn.Module): | ||
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): | ||
super().__init__() | ||
inner_dim = dim_head * heads | ||
self.heads = heads | ||
self.scale = dim_head ** -0.5 | ||
|
||
self.to_q = nn.Linear(dim, inner_dim, bias = False) | ||
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False) | ||
|
||
self.attend = nn.Softmax(dim = -1) | ||
|
||
self.mix_heads_pre_attn = nn.Parameter(torch.randn(heads, heads)) | ||
self.mix_heads_post_attn = nn.Parameter(torch.randn(heads, heads)) | ||
|
||
self.to_out = nn.Sequential( | ||
nn.Linear(inner_dim, dim), | ||
nn.Dropout(dropout) | ||
) | ||
|
||
def forward(self, x, context = None): | ||
b, n, _, h = *x.shape, self.heads | ||
|
||
context = x if not exists(context) else torch.cat((x, context), dim = 1) | ||
|
||
qkv = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1)) | ||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv) | ||
|
||
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale | ||
|
||
dots = einsum('b h i j, h g -> b g i j', dots, self.mix_heads_pre_attn) # talking heads, pre-softmax | ||
attn = self.attend(dots) | ||
attn = einsum('b h i j, h g -> b g i j', attn, self.mix_heads_post_attn) # talking heads, post-softmax | ||
|
||
out = einsum('b h i j, b h j d -> b h i d', attn, v) | ||
out = rearrange(out, 'b h n d -> b n (h d)') | ||
return self.to_out(out) | ||
|
||
class Transformer(nn.Module): | ||
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): | ||
super().__init__() | ||
self.layers = nn.ModuleList([]) | ||
for _ in range(depth): | ||
self.layers.append(nn.ModuleList([ | ||
LayerScale(dim, PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout))), | ||
LayerScale(dim, PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))) | ||
])) | ||
def forward(self, x, context = None): | ||
for attn, ff in self.layers: | ||
x = attn(x, context = context) + x | ||
x = ff(x) + x | ||
return x | ||
|
||
class CaiT(nn.Module): | ||
def __init__( | ||
self, | ||
*, | ||
image_size, | ||
patch_size, | ||
num_classes, | ||
dim, | ||
depth, | ||
cls_depth, | ||
heads, | ||
mlp_dim, | ||
dim_head = 64, | ||
dropout = 0., | ||
emb_dropout = 0. | ||
): | ||
super().__init__() | ||
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.' | ||
num_patches = (image_size // patch_size) ** 2 | ||
patch_dim = 3 * patch_size ** 2 | ||
|
||
self.to_patch_embedding = nn.Sequential( | ||
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size), | ||
nn.Linear(patch_dim, dim), | ||
) | ||
|
||
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim)) | ||
self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) | ||
self.dropout = nn.Dropout(emb_dropout) | ||
|
||
self.patch_transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) | ||
self.cls_transformer = Transformer(dim, cls_depth, heads, dim_head, mlp_dim, dropout) | ||
|
||
self.mlp_head = nn.Sequential( | ||
nn.LayerNorm(dim), | ||
nn.Linear(dim, num_classes) | ||
) | ||
|
||
def forward(self, img): | ||
x = self.to_patch_embedding(img) | ||
b, n, _ = x.shape | ||
|
||
x += self.pos_embedding[:, :n] | ||
x = self.dropout(x) | ||
|
||
x = self.patch_transformer(x) | ||
|
||
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) | ||
x = self.cls_transformer(cls_tokens, context = x) | ||
|
||
return self.mlp_head(x[:, 0]) |