This package brings language model capabilities into the coding environment, providing a variety of functionalities such as:
- Message and ask anything
- Chat and have a conversation
- Chat about a function
- Chat about a numpy array
- Chat about a pandas dataframe
- Chat about a pytorch tensor
- Generate a function interactively
- Generate a function by setting data within the code
- Generate a function and provide a comment on the result for guided generation
Function generation feature iteratively builds and refines functions by evaluating them against predefined test cases.
This package utilizes a local private LLM:
- Your code is not shared with any external service provider, guaranteeing complete privacy during the generation process.
- Ensuring that your generation process remains entirely within your own environment, without the need for a network connection.
pip install utilityai
Download the model once after installation
from utilityai.model import download
download()
Message and ask anything
from utilityai.chat import message
message("How do you transpose a PyTorch tensor?");
Chat and have a conversation
from utilityai.chat import message
r1, c1 = message("What do mutable and immutable mean?")
message("Give more examples.", c1);
Chat about a function
from utilityai.chat import message
def list_sum(numbers):
return sum(numbers)
r1, c1 = message("What does this do?", attachment=list_sum)
message("Return the minimum and maximum values of the numbers instead.", c1);
Chat about a numpy array
from utilityai.chat import message
import numpy as np
array = np.array([[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]])
r1, c1 = message("Each row represents the salary of a person. How do I calculate the average salary of each person in another array?", attachment=array)
message("How do I calculate the average salary of these people for each year in an array?", c1);
Chat about a pandas dataframe
from utilityai.chat import message
import pandas as pd
data = {
'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],
'Age': [24, 27, 22, 32, 29],
'Salary': [50000, 54000, 49000, 62000, 58000],
'Department': ['HR', 'Engineering', 'Marketing', 'Finance', 'Engineering'],
'Joining Date': pd.to_datetime(['2020-01-15', '2019-06-23', '2021-03-01', '2018-11-15', '2020-08-30'])
}
df = pd.DataFrame(data)
r1, c1 = message("How to calculate the average salary?", attachment=df)
message("How to calculate the average salary for each department?", c1);
Chat about a pytorch tensor
from utilityai.chat import message
import torch
tensor = torch.tensor([[1, 2, 3], [4, 5, 6]])
r1, c1 = message("How to transpose this tensor?", attachment=tensor)
message("How to determine the size of the resulting tensor?", c1);
Generate a function interactively by calling data() first, then provide function information
from utilityai.code import InputData, function
data = InputData()
data()
function(data);
Generate a function by setting data within the code
from utilityai.code import InputData, function
data = InputData()
data_dict = {
'function_name': 'prime_number_checker',
'input_names': ['num'],
'input_types': ['int'],
'output_names': ['is_prime'],
'output_types': ['bool'],
'description': "A function to check if a given number is prime.",
'test_cases': [
{'inputs': [5], 'outputs': [True]},
{'inputs': [10], 'outputs': [False]},
{'inputs': [17], 'outputs': [True]}
]
}
data.set_data(data_dict['function_name'], data_dict['input_names'], data_dict['output_names'], data_dict['input_types'], data_dict['output_types'], data_dict['description'], data_dict['test_cases'])
function(data);
Generate a function and provide a comment on the result for guided generation
from utilityai.code import InputData, function
data = InputData()
data_dict = {
'function_name': 'vague_function',
'input_names': ['a', 'b'],
'input_types': ['int', 'int'],
'output_names': ['subtract'],
'output_types': ['int'],
'description': "A function to subtract two numbers.",
'test_cases': [
{'inputs': [1,2], 'outputs': [1]}
]
}
data.set_data(data_dict['function_name'], data_dict['input_names'], data_dict['output_names'], data_dict['input_types'], data_dict['output_types'], data_dict['description'], data_dict['test_cases'])
res = function(data, max_tries=1)
res.comment = "A function that subtracts the smaller number from the larger one."
function(data, res);