Skip to content

Commit

Permalink
Merge pull request PSLmodels#278 from jdebacker/prod_function
Browse files Browse the repository at this point in the history
[WIP] Generalize the firm production function
  • Loading branch information
PeterDSteinberg authored Apr 5, 2017
2 parents 23a3ca7 + 246cd59 commit 2a5f26c
Show file tree
Hide file tree
Showing 6 changed files with 287 additions and 130 deletions.
196 changes: 148 additions & 48 deletions Python/ogusa/SS.py
Original file line number Diff line number Diff line change
Expand Up @@ -124,6 +124,7 @@ def create_steady_state_parameters(**sim_params):

ss_params = [sim_params['J'], sim_params['S'], sim_params['T'], sim_params['BW'],
sim_params['beta'], sim_params['sigma'], sim_params['alpha'],
sim_params['gamma'], sim_params['epsilon'],
sim_params['Z'], sim_params['delta'], sim_params['ltilde'],
sim_params['nu'], sim_params['g_y'], sim_params['g_n_ss'],
sim_params['tau_payroll'], sim_params['tau_bq'], sim_params['rho'], sim_params['omega_SS'],
Expand Down Expand Up @@ -285,9 +286,9 @@ def inner_loop(outer_loop_vars, params, baseline, baseline_spending=False):

# unpack variables and parameters pass to function
ss_params, income_tax_params, chi_params, small_open_params = params
J, S, T, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y,\
g_n_ss, tau_payroll, tau_bq, rho, omega_SS, budget_balance, alpha_T, \
debt_ratio_ss, tau_b, delta_tau,\
J, S, T, BW, beta, sigma, alpha, gamma, epsilon, Z, delta, ltilde, nu, g_y,\
g_n_ss, tau_payroll, tau_bq, rho, omega_SS, budget_balance, \
alpha_T, debt_ratio_ss, tau_b, delta_tau,\
lambdas, imm_rates, e, retire, mean_income_data,\
h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = ss_params

Expand Down Expand Up @@ -336,20 +337,23 @@ def inner_loop(outer_loop_vars, params, baseline, baseline_spending=False):
else:
K = B - debt_ratio_ss*Y
else:
K_params = (alpha, delta, Z, tau_b, delta_tau)
K_params = (Z, gamma, epsilon, delta, tau_b, delta_tau)
K = firm.get_K(L, ss_firm_r, K_params)
Y_params = (alpha, Z)
# Y_params = (alpha, Z)
Y_params = (Z, gamma, epsilon)
new_Y = firm.get_Y(K, L, Y_params)
#print 'inner K, L, Y: ', K, L, new_Y
if budget_balance:
Y = new_Y
if small_open == False:
r_params = (alpha, delta, tau_b, delta_tau)
r_params = (Z, gamma, epsilon, delta, tau_b, delta_tau)
new_r = firm.get_r(Y, K, r_params)
else:
new_r = ss_hh_r
new_w = firm.get_w(Y, L, alpha)
#print 'inner factor prices: ', new_r, new_w
w_params = (Z, gamma, epsilon)
new_w = firm.get_w(Y, L, w_params)
print 'inner factor prices: ', new_r, new_w

b_s = np.array(list(np.zeros(J).reshape(1, J)) + list(bssmat[:-1, :]))
average_income_model = ((new_r * b_s + new_w * e * nssmat) *
omega_SS.reshape(S, 1) *
Expand Down Expand Up @@ -377,7 +381,7 @@ def inner_loop(outer_loop_vars, params, baseline, baseline_spending=False):
new_T_H, new_Y, new_factor, new_BQ, average_income_model


def SS_solver(b_guess_init, n_guess_init, rss, wss, T_Hss, Yss, factor_ss, params, baseline, fsolve_flag=False, baseline_spending=False):
def SS_solver(b_guess_init, n_guess_init, rss, wss, T_Hss, factor_ss, Yss, params, baseline, fsolve_flag=False, baseline_spending=False):
'''
--------------------------------------------------------------------
Solves for the steady state distribution of capital, labor, as well as
Expand Down Expand Up @@ -442,10 +446,9 @@ def SS_solver(b_guess_init, n_guess_init, rss, wss, T_Hss, Yss, factor_ss, param
'''

bssmat, nssmat, chi_params, ss_params, income_tax_params, iterative_params, small_open_params = params

J, S, T, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y,\
g_n_ss, tau_payroll, tau_bq, rho, omega_SS, budget_balance, alpha_T,\
debt_ratio_ss, tau_b, delta_tau,\
J, S, T, BW, beta, sigma, alpha, gamma, epsilon, Z, delta, ltilde, nu, g_y,\
g_n_ss, tau_payroll, tau_bq, rho, omega_SS, budget_balance, \
alpha_T, debt_ratio_ss, tau_b, delta_tau,\
lambdas, imm_rates, e, retire, mean_income_data,\
h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = ss_params

Expand All @@ -461,8 +464,12 @@ def SS_solver(b_guess_init, n_guess_init, rss, wss, T_Hss, Yss, factor_ss, param
r = rss
w = wss
T_H = T_Hss
Y = Yss
factor = factor_ss
if budget_balance == False:
if baseline_spending == True:
Y = Yss
else:
Y = T_H / alpha_T
if small_open == True:
r = ss_hh_r

Expand Down Expand Up @@ -490,6 +497,10 @@ def SS_solver(b_guess_init, n_guess_init, rss, wss, T_Hss, Yss, factor_ss, param
factor = utils.convex_combo(new_factor, factor, nu)
if budget_balance:
T_H = utils.convex_combo(new_T_H, T_H, nu)
dist = np.array([utils.pct_diff_func(new_r, r)] +
[utils.pct_diff_func(new_w, w)] +
[utils.pct_diff_func(new_T_H, T_H)] +
[utils.pct_diff_func(new_factor, factor)]).max()
else:
Y = utils.convex_combo(new_Y, Y, nu)
if Y != 0:
Expand Down Expand Up @@ -541,7 +552,7 @@ def SS_solver(b_guess_init, n_guess_init, rss, wss, T_Hss, Yss, factor_ss, param
Iss = firm.get_I(bssmat_splus1, Kss, Kss, Iss_params)
else:
# Compute capital (K) and wealth (B) separately
Kss_params = (alpha, delta, Z, tau_b, delta_tau)
Kss_params = (Z, gamma, epsilon, delta, tau_b, delta_tau)
Kss = firm.get_K(Lss, ss_firm_r, Kss_params)
Iss_params = (delta, g_y, omega_SS, lambdas, imm_rates, g_n_ss, 'SS')
InvestmentPlaceholder = np.zeros(bssmat_splus1.shape)
Expand All @@ -556,7 +567,8 @@ def SS_solver(b_guess_init, n_guess_init, rss, wss, T_Hss, Yss, factor_ss, param
debt_ss = debt_ratio_ss*Y


Yss_params = (alpha, Z)
# Yss_params = (alpha, Z)
Yss_params = (Z, gamma, epsilon)
Yss = firm.get_Y(Kss, Lss, Yss_params)

# Verify that T_Hss = alpha_T*Yss
Expand All @@ -570,7 +582,7 @@ def SS_solver(b_guess_init, n_guess_init, rss, wss, T_Hss, Yss, factor_ss, param
theta_params = (e, S, retire)
theta = tax.replacement_rate_vals(nssmat, wss, factor_ss, theta_params)

# Next 5 lines pulled out of inner_loop where they used to calculate T_H. Now calculating G to balance gov't budget.
# Next 5 lines pulled out of inner_loop where they are used to calculate tax revenue. Now calculating G to balance gov't budget.
b_s = np.array(list(np.zeros(J).reshape(1, J)) + list(bssmat[:-1, :]))
lump_sum_params = (e, lambdas.reshape(1, J), omega_SS.reshape(S, 1), 'SS', etr_params, theta, tau_bq,
tau_payroll, h_wealth, p_wealth, m_wealth, retire, T, S, J, tau_b, delta_tau)
Expand Down Expand Up @@ -692,10 +704,9 @@ def SS_fsolve(guesses, params):
'''

bssmat, nssmat, chi_params, ss_params, income_tax_params, iterative_params, small_open_params = params

J, S, T, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y,\
g_n_ss, tau_payroll, tau_bq, rho, omega_SS, budget_balance, alpha_T,\
debt_ratio_ss, tau_b, delta_tau,\
J, S, T, BW, beta, sigma, alpha, gamma, epsilon, Z, delta, ltilde, nu, g_y,\
g_n_ss, tau_payroll, tau_bq, rho, omega_SS, budget_balance,\
alpha_T, debt_ratio_ss, tau_b, delta_tau,\
lambdas, imm_rates, e, retire, mean_income_data,\
h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = ss_params

Expand All @@ -713,6 +724,8 @@ def SS_fsolve(guesses, params):
T_H = guesses[2]
factor = guesses[3]

print 'r, w at outset: ', r, w

# Solve for the steady state levels of b and n, given w, r, T_H and
# factor
if budget_balance:
Expand All @@ -736,13 +749,14 @@ def SS_fsolve(guesses, params):
# print 'model income with factor: ', average_income_model*factor

# print 'errors: ', error1, error2, error3, error4

print 'Y: ', new_Y
# print 'factor: ', new_factor
# print 'factor prices: ', new_r, new_w


# Check and punish violations
if r <= 0:
if r+delta <= 0:
error1 = 1e9
#if r > 1:
# error1 += 1e9
Expand All @@ -751,6 +765,8 @@ def SS_fsolve(guesses, params):
if factor <= 0:
error4 = 1e9

print 'errors: ', error1, error2, error3, error4

return [error1, error2, error3, error4]


Expand Down Expand Up @@ -782,14 +798,14 @@ def SS_fsolve_reform(guesses, params):
solutions = steady state values of b, n, w, r, factor,
T_H ((2*S*J+4)x1 array)
'''
bssmat, nssmat, chi_params, ss_params, income_tax_params, iterative_params, T_H, factor, small_open_params, baseline_spending = params

J, S, T, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y,\
g_n_ss, tau_payroll, tau_bq, rho, omega_SS, budget_balance, alpha_T,\
debt_ratio_ss, tau_b, delta_tau,\
bssmat, nssmat, chi_params, ss_params, income_tax_params, iterative_params, factor, small_open_params = params
J, S, T, BW, beta, sigma, alpha, gamma, epsilon, Z, delta, ltilde, nu, g_y,\
g_n_ss, tau_payroll, tau_bq, rho, omega_SS, budget_balance,\
alpha_T, debt_ratio_ss, tau_b, delta_tau,\
lambdas, imm_rates, e, retire, mean_income_data,\
h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = ss_params


analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params

chi_b, chi_n = chi_params
Expand All @@ -800,28 +816,106 @@ def SS_fsolve_reform(guesses, params):
# Rename the inputs
r = guesses[0]
w = guesses[1]
Y = guesses[2]
T_H = guesses[2]

# Solve for the steady state levels of b and n, given w, r, T_H and
# factor
if budget_balance:
outer_loop_vars = (bssmat, nssmat, r, w, T_H, factor)
else:
Y = T_H / alpha_T
outer_loop_vars = (bssmat, nssmat, r, w, Y, T_H, factor)
inner_loop_params = (ss_params, income_tax_params, chi_params, small_open_params)

euler_errors, bssmat, nssmat, new_r, new_w, \
new_T_H, new_Y, new_factor, new_BQ, average_income_model = inner_loop(outer_loop_vars, inner_loop_params, baseline, baseline_spending)
new_T_H, new_Y, new_factor, new_BQ, average_income_model = inner_loop(outer_loop_vars, inner_loop_params, baseline, False)

error1 = new_r - r
error2 = new_w - w
if budget_balance:
error3 = new_T_H - T_H
else:
error3 = new_Y - Y


print 'errors: ', error1, error2, error3
# print 'factor prices: ', r, w

# Check and punish violations
if r+delta <= 0:
error1 = 1e9
#if r > 1:
# error1 += 1e9
if w <= 0:
error2 = 1e9

return [error1, error2, error3]

def SS_fsolve_reform_baselinespend(guesses, params):
'''
Solves for the steady state distribution of capital, labor, as well as
w, r, and Y, using a root finder. This solves for the
reform SS when baseline_speding=True and so takes the factor and gov't
transfers (T_H) from the baseline SS as an input.
Inputs:
b_guess_init = guesses for b (SxJ array)
n_guess_init = guesses for n (SxJ array)
wguess = guess for wage rate (scalar)
rguess = guess for rental rate (scalar)
T_Hguess = guess for lump sum tax (scalar)
factor = scaling factor to dollars (scalar)
chi_n = chi^n_s (Sx1 array)
chi_b = chi^b_j (Jx1 array)
params = list of parameters (list)
iterative_params = list of parameters that determine the convergence
of the while loop (list)
tau_bq = bequest tax rate (Jx1 array)
rho = mortality rates (Sx1 array)
lambdas = ability weights (Jx1 array)
omega_SS = population weights (Sx1 array)
e = ability levels (SxJ array)
Outputs:
solutions = steady state values of b, n, w, r, factor,
T_H ((2*S*J+4)x1 array)
'''
bssmat, nssmat, T_Hss, chi_params, ss_params, income_tax_params, iterative_params, factor, small_open_params = params
J, S, T, BW, beta, sigma, alpha, gamma, epsilon, Z, delta, ltilde, nu, g_y,\
g_n_ss, tau_payroll, tau_bq, rho, omega_SS, budget_balance,\
alpha_T, debt_ratio_ss, tau_b, delta_tau,\
lambdas, imm_rates, e, retire, mean_income_data,\
h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = ss_params


analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params

chi_b, chi_n = chi_params

maxiter, mindist_SS = iterative_params

baseline = False
# Rename the inputs
r = guesses[0]
w = guesses[1]
Y = guesses[2]

# Solve for the steady state levels of b and n, given w, r, T_H and
# factor
T_H = T_Hss
outer_loop_vars = (bssmat, nssmat, r, w, Y, T_H, factor)
inner_loop_params = (ss_params, income_tax_params, chi_params, small_open_params)

euler_errors, bssmat, nssmat, new_r, new_w, \
new_T_H, new_Y, new_factor, new_BQ, average_income_model = inner_loop(outer_loop_vars, inner_loop_params, baseline, True)

error1 = new_r - r
error2 = new_w - w
error3 = new_Y - Y
# print 'errors: ', error1, error2, error3

print 'errors: ', error1, error2, error3
# print 'factor prices: ', r, w

# Check and punish violations
if r <= 0:
if r+delta <= 0:
error1 = 1e9
#if r > 1:
# error1 += 1e9
Expand All @@ -840,7 +934,7 @@ def run_SS(income_tax_params, ss_params, iterative_params, chi_params, small_ope
INPUTS:
income_tax_parameters = length 4 tuple, (analytical_mtrs, etr_params, mtrx_params, mtry_params)
ss_parameters = length 21 tuple, (J, S, T, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y,\
ss_parameters = length 21 tuple, (J, S, T, BW, beta, sigma, alpha, gamma, epsilon, Z, delta, ltilde, nu, g_y,\
g_n_ss, tau_payroll, retire, mean_income_data,\
h_wealth, p_wealth, m_wealth, b_ellipse, upsilon)
iterative_params = [2,] vector, vector with max iterations and tolerance
Expand Down Expand Up @@ -873,13 +967,13 @@ def run_SS(income_tax_params, ss_params, iterative_params, chi_params, small_ope
OUTPUT: None
--------------------------------------------------------------------
'''

J, S, T, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y,\
g_n_ss, tau_payroll, tau_bq, rho, omega_SS, budget_balance, alpha_T,\
debt_ratio_ss, tau_b, delta_tau,\
J, S, T, BW, beta, sigma, alpha, gamma, epsilon, Z, delta, ltilde, nu, g_y,\
g_n_ss, tau_payroll, tau_bq, rho, omega_SS, budget_balance,\
alpha_T, debt_ratio_ss, tau_b, delta_tau,\
lambdas, imm_rates, e, retire, mean_income_data,\
h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = ss_params


analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params

chi_b, chi_n = chi_params
Expand All @@ -891,7 +985,7 @@ def run_SS(income_tax_params, ss_params, iterative_params, chi_params, small_ope
# For initial guesses of w, r, T_H, and factor, we use values that are close
# to some steady state values.
if baseline:
rguess = 0.01 + delta
rguess = 0.04#0.01 + delta
wguess = 1.2
T_Hguess = 0.12
factorguess = 70000
Expand All @@ -902,29 +996,35 @@ def run_SS(income_tax_params, ss_params, iterative_params, chi_params, small_ope
if ENFORCE_SOLUTION_CHECKS and not ier == 1:
raise RuntimeError("Steady state equilibrium not found")
[rss, wss, T_Hss, factor_ss] = solutions_fsolve
Yss = T_Hss/alpha_T
Yss = T_Hss/alpha_T #may not be right - if budget_balance = True, but that's ok - will be fixed in SS_solver
fsolve_flag = True
# Return SS values of variables
solution_params= [b_guess.reshape(S, J), n_guess.reshape(S, J), chi_params, ss_params, income_tax_params, iterative_params, small_open_params]
output = SS_solver(b_guess.reshape(S, J), n_guess.reshape(S, J), rss, wss, T_Hss, Yss, factor_ss, solution_params, baseline, fsolve_flag)
output = SS_solver(b_guess.reshape(S, J), n_guess.reshape(S, J), rss, wss, T_Hss, factor_ss, Yss, solution_params, baseline, fsolve_flag, baseline_spending)
# print "solved output", wss, rss, T_Hss, factor_ss
# print 'analytical mtrs in SS: ', analytical_mtrs
else:
baseline_ss_dir = os.path.join(
baseline_dir, "SS/SS_vars.pkl")
ss_solutions = pickle.load(open(baseline_ss_dir, "rb"))
[rguess, wguess, T_Hss, Yguess, factor] = [ss_solutions['rss'], ss_solutions['wss'], ss_solutions['T_Hss'], ss_solutions['Yss'], ss_solutions['factor_ss']]
ss_params_reform = [b_guess.reshape(S, J), n_guess.reshape(S, J), chi_params, ss_params, income_tax_params, iterative_params, T_Hss, factor, small_open_params, baseline_spending]
guesses = [rguess, wguess, Yguess]
[solutions_fsolve, infodict, ier, message] = opt.fsolve(SS_fsolve_reform, guesses, args=ss_params_reform, xtol=mindist_SS, full_output=True)
[rguess, wguess, T_Hguess, Yguess, factor] = [ss_solutions['rss'], ss_solutions['wss'], ss_solutions['T_Hss'], ss_solutions['Yss'], ss_solutions['factor_ss']]
if baseline_spending:
T_Hss = T_Hguess
ss_params_reform = [b_guess.reshape(S, J), n_guess.reshape(S, J), T_Hss, chi_params, ss_params, income_tax_params, iterative_params, factor, small_open_params]
guesses = [rguess, wguess, Yguess]
[solutions_fsolve, infodict, ier, message] = opt.fsolve(SS_fsolve_reform_baselinespend, guesses, args=ss_params_reform, xtol=mindist_SS, full_output=True)
[rss, wss, Yss] = solutions_fsolve
else:
ss_params_reform = [b_guess.reshape(S, J), n_guess.reshape(S, J), chi_params, ss_params, income_tax_params, iterative_params, factor, small_open_params]
guesses = [rguess, wguess, T_Hguess]
[solutions_fsolve, infodict, ier, message] = opt.fsolve(SS_fsolve_reform, guesses, args=ss_params_reform, xtol=mindist_SS, full_output=True)
[rss, wss, T_Hss] = solutions_fsolve
Yss = T_Hss/alpha_T #may not be right - if budget_balance = True, but that's ok - will be fixed in SS_solver
if ENFORCE_SOLUTION_CHECKS and not ier == 1:
raise RuntimeError("Steady state equilibrium not found")
# Return SS values of variables
[rss, wss, Yss] = solutions_fsolve
if baseline_spending==False:
T_Hss = alpha_T*Yss
fsolve_flag = True
# Return SS values of variables
solution_params= [b_guess.reshape(S, J), n_guess.reshape(S, J), chi_params, ss_params, income_tax_params, iterative_params, small_open_params]
output = SS_solver(b_guess.reshape(S, J), n_guess.reshape(S, J), rss, wss, T_Hss, Yss, factor, solution_params, baseline, fsolve_flag, baseline_spending)
output = SS_solver(b_guess.reshape(S, J), n_guess.reshape(S, J), rss, wss, T_Hss, factor, Yss, solution_params, baseline, fsolve_flag, baseline_spending)
return output
Loading

0 comments on commit 2a5f26c

Please sign in to comment.