Robot Skill Adaptation via Soft Actor-Critic Gaussian Mixture Models
Iman Nematollahi*, Erick Rosete Beas*, Adrian Röfer, Tim Welschehold, Abhinav Valada, Wolfram Burgard
We present SAC-GMM, ...
To begin, clone this repository locally
git clone https://github.com/nematoli/sac_gmm.git
export SACGMM_ROOT=$(pwd)/sac_gmm
Install requirements:
cd SACGMM_ROOT
conda create -n sacgmm_venv python=3.8
conda activate sacgmm_venv
sh install.sh
For Development:
pip install -r requirements-dev.txt
pre-commit install
Download the CALVIN dataset and place it inside dataset/.
Configure config/demos.yaml.
> python sacgmm/extract_demos.py skill='open_drawer'
Configure config/gmm_train.yaml.
> python sac_gmm/scripts/gmm_train.py skill='open_drawer'
Configure config/gmm_eval.yaml.
> python sac_gmm/scripts/gmm_eval.py skill='open_drawer'
We provide our final models for ...
cd SACGMM_ROOT/checkpoints
sh download_model_weights.sh
python
python
python
If you find the code useful, please cite:
SAC-GMM
@inproceedings{nematollahi22icra,
author = {Iman Nematollahi and Erick Rosete-Beas and Adrian Roefer and Tim Welschehold and Abhinav Valada and Wolfram Burgard},
title = {Robot Skill Adaptation via Soft Actor-Critic Gaussian Mixture Models},
booktitle = {Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)},
pages={8651-8657},
year = 2022,
url={http://ais.informatik.uni-freiburg.de/publications/papers/nematollahi22icra.pdf},
address = {Philadelphia, USA}
}
MIT License