Skip to content

Commit

Permalink
Open access links (NeuromatchAcademy#853)
Browse files Browse the repository at this point in the history
* Fix a few minor link issues

* Provide substitutions for open/closed access logos

* make open access logo background transparent

* move _static to correct place

* Add open/closed access badges and provide preprint/postprint links
  • Loading branch information
mstimberg authored Apr 11, 2022
1 parent 1725224 commit c53db9f
Show file tree
Hide file tree
Showing 16 changed files with 173 additions and 164 deletions.
6 changes: 6 additions & 0 deletions book/_config.yml
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,12 @@ parse:
- amsmath
- dollarmath
- html_image
- substitution
sphinx:
config:
myst_substitutions:
open_access: "<img alt='Open Access publication' src='../static/Open_Access_logo.png' height=0.8em class='no-scaled-link inline-icon'>"
closed_access: "<img alt='Closed Access publication' src='../static/Closed_Access_logo.png' height=0.8em class='no-scaled-link inline-icon'>"

#######################################################################################
# HTML-specific settings
Expand Down
3 changes: 3 additions & 0 deletions book/_static/custom.css
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
.inline-icon {
vertical-align: baseline;
}
34 changes: 17 additions & 17 deletions tutorials/W1D1_ModelTypes/further_reading.md
Original file line number Diff line number Diff line change
@@ -1,58 +1,58 @@
# Suggested further readings

Bassett, D. S., Zurn, P., and Gold, J. I. (2018). On the nature and use of models in network neuroscience. Nature Reviews Neuroscience. doi: [10.1038/s41583-018-0038-8](https://doi.org/10.1038/s41583-018-0038-8).
Bassett, D. S., Zurn, P., and Gold, J. I. (2018). On the nature and use of models in network neuroscience. Nature Reviews Neuroscience. doi: [10.1038/s41583-018-0038-8](https://doi.org/10.1038/s41583-018-0038-8) {{ closed_access }} (postprint: [europepmc.org/articles/pmc6466618?pdf=render](https://europepmc.org/articles/pmc6466618?pdf=render) {{ open_access }}).

Bennett, M. R., and Hacker, P. M. S. (2003). Philosophical Foundations of Neuroscience, Wiley-Blackwell.

Blohm, G., Kording, K. P., and Schrater, P. R. (2020). A how-to-model guide for Neuroscience. Eneuro, 7(1). doi : [10.1523/ENEURO.0352-19.2019](https://doi.org/10.1523/ENEURO.0352-19.2019).
Blohm, G., Kording, K. P., and Schrater, P. R. (2020). A how-to-model guide for Neuroscience. Eneuro, 7(1). doi: [10.1523/ENEURO.0352-19.2019](https://doi.org/10.1523/ENEURO.0352-19.2019) {{ open_access }}.

Burgess, J. (1998). Occam’s razor and scientific method. In The Philosophy of Mathematics Today (pp. 195–214). Clarendon Press, Oxford.

Chandrasekhar, S. (2013). Truth and beauty. University of Chicago Press.

Chater, N., and Oaksford, M. (1999). Ten years of the rational analysis of cognition. Trends in cognitive sciences, 3(2), 57-65. doi: [10.1016/S1364-6613(98)01273-X](https://doi.org/10.1016/S1364-6613(98)01273-X).
Chater, N., and Oaksford, M. (1999). Ten years of the rational analysis of cognition. Trends in cognitive sciences, 3(2), 57-65. doi: [10.1016/S1364-6613(98)01273-X](https://doi.org/10.1016/S1364-6613(98)01273-X) {{ closed_access }}.

Churchland, P. S., and Sejnowski, T. J. (1990). Neural representation and neural computation. Philosophical Perspectives, 4, 343-382. doi: [10.2307/2214198](https://doi.org/10.2307/2214198).
Churchland, P. S., and Sejnowski, T. J. (1990). Neural representation and neural computation. Philosophical Perspectives, 4, 343-382. doi: [10.2307/2214198](https://doi.org/10.2307/2214198) {{ closed_access }} (preprint: [papers.cnl.salk.edu/PDFs/Neural%20Representation%20and%20Neural%20Computation%201990-3325.pdf](http://papers.cnl.salk.edu/PDFs/Neural%20Representation%20and%20Neural%20Computation%201990-3325.pdf) {{ open_access }}).

Churchland, P. S., and Sejnowski, T. J. (1988). Perspectives on cognitive neuroscience. Science, 242(4879), 741-745. doi: [10.1126/science.3055294](https://doi.org/10.1126/science.3055294).
Churchland, P. S., and Sejnowski, T. J. (1988). Perspectives on cognitive neuroscience. Science, 242(4879), 741-745. doi: [10.1126/science.3055294](https://doi.org/10.1126/science.3055294) {{ closed_access }}.

Cichy, R. M., and Kaiser, D. (2019). Deep neural networks as scientific models. Trends in cognitive sciences, 23(4), 305-317. doi: [10.1016/j.tics.2019.01.009](https://doi.org/10.1016/j.tics.2019.01.009).
Cichy, R. M., and Kaiser, D. (2019). Deep neural networks as scientific models. Trends in cognitive sciences, 23(4), 305-317. doi: [10.1016/j.tics.2019.01.009](https://doi.org/10.1016/j.tics.2019.01.009) {{ open_access }}.

Dayan, P. (2005). Theoretical Neuroscience: Computational And Mathematical Modeling of Neural Systems. MIT Press.

Feldman, J. (2016). The simplicity principle in perception and cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 7(5), 330-340. doi: [10.1002/wcs.1406](https://doi.org/10.1002/wcs.1406).
Feldman, J. (2016). The simplicity principle in perception and cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 7(5), 330-340. doi: [10.1002/wcs.1406](https://doi.org/10.1002/wcs.1406) {{ closed_access }} (postprint: [europepmc.org/articles/pmc5125387?pdf=render](https://europepmc.org/articles/pmc5125387?pdf=render) {{ open_access }}).

Gillett, C. (2016). Reduction and Emergence in Science and Philosophy. Cambridge University Press.

Goldstein, R. E. (2018). Point of View: Are theoretical results ‘Results’?. Elife, 7, e40018. doi: [10.7554/elife.40018](https://doi.org/10.7554/elife.40018).
Goldstein, R. E. (2018). Point of View: Are theoretical results ‘Results’?. Elife, 7, e40018. doi: [10.7554/elife.40018](https://doi.org/10.7554/elife.40018) {{ open_access }}.

Jonas, E., and Kording, K. P. (2017). Could a neuroscientist understand a microprocessor?. PLoS computational biology, 13(1), e1005268. doi: [10.1371/journal.pcbi.1005268](https://doi.org/10.1371/journal.pcbi.1005268).
Jonas, E., and Kording, K. P. (2017). Could a neuroscientist understand a microprocessor?. PLoS computational biology, 13(1), e1005268. doi: [10.1371/journal.pcbi.1005268](https://doi.org/10.1371/journal.pcbi.1005268) {{ open_access }}.

Josephson, J. R., and Josephson, S. G. (Eds.). (1996). Abductive inference: Computation, philosophy, technology. Cambridge University Press.

Kaplan, D. M. (2011). Explanation and description in computational neuroscience. Synthese, 183(3), 339-373. doi: [https://doi.org/10.1007/s11229-011-9970-0](10.1007/s11229-011-9970-0).
Kaplan, D. M. (2011). Explanation and description in computational neuroscience. Synthese, 183(3), 339-373. doi: [10.1007/s11229-011-9970-0](https://doi.org/10.1007/s11229-011-9970-0) {{ closed_access }}.

Kording, K., Blohm, G., Schrater, P., and Kay, K. (2018). Appreciating diversity of goals in computational neuroscience. doi: [10.31219/osf.io/3vy69](https://doi.org/10.31219/osf.io/3vy69).
Kording, K., Blohm, G., Schrater, P., and Kay, K. (2018). Appreciating diversity of goals in computational neuroscience. doi: [10.31219/osf.io/3vy69](https://doi.org/10.31219/osf.io/3vy69) {{ open_access }}.

Lee, M. D., Criss, A. H., Devezer, B., Donkin, C., Etz, A., Leite, F. P., ..., and Vandekerckhove, J. (2019). Robust modeling in cognitive science. Computational Brain & Behavior, 2(3), 141-153. doi: [10.31234/osf.io/dmfhk](https://doi.org/10.31234/osf.io/dmfhk).
Lee, M. D., Criss, A. H., Devezer, B., Donkin, C., Etz, A., Leite, F. P., ..., and Vandekerckhove, J. (2019). Robust modeling in cognitive science. Computational Brain & Behavior, 2(3), 141-153. doi: [10.31234/osf.io/dmfhk](https://doi.org/10.31234/osf.io/dmfhk) {{ open_access }}.

Lombrozo, T. (2012). Explanation and Abductive Inference. Oxford Handbooks Online. doi: [10.1093/oxfordhb/9780199734689.013.0014](https://doi.org/10.1093/oxfordhb/9780199734689.013.0014).
Lombrozo, T. (2012). Explanation and Abductive Inference. Oxford Handbooks Online. doi: [10.1093/oxfordhb/9780199734689.013.0014](https://doi.org/10.1093/oxfordhb/9780199734689.013.0014) {{ closed_access }}.

Marr, D., and Poggio, T. (1976). From Understanding Computation to Understanding Neural Circuitry. Artificial Intelligence Laboratory. A.I. Memo. Massachusetts Institute of Technology. AIM-357. Retrieved from [dspace.mit.edu/handle/1721.1/5782](https://dspace.mit.edu/handle/1721.1/5782).

Parker, W. S. (2012). Computer simulation and philosophy of science. Metascience, Vol. 21, pp. 111–114. doi: [10.1007/s11016-011-9567-8](https://doi.org/10.1007/s11016-011-9567-8).
Parker, W. S. (2012). Computer simulation and philosophy of science. Metascience, Vol. 21, pp. 111–114. doi: [10.1007/s11016-011-9567-8](https://doi.org/10.1007/s11016-011-9567-8) {{ closed_access }}.

Pearl, J., and Mackenzie, D. (2018). The Book of Why: The New Science of Cause and Effect. Basic Books.

Russell, B. (1917). Mysticism and logic, and other essays. doi: [10.5962/bhl.title.19230](https://doi.org/10.5962/bhl.title.19230).
Russell, B. (1917). Mysticism and logic, and other essays. doi: [10.5962/bhl.title.19230](https://doi.org/10.5962/bhl.title.19230) {{ closed_access }} (postprint: [archive.org/download/mysticismlogicot00russiala/mysticismlogicot00russiala_bw.pdf](https://archive.org/download/mysticismlogicot00russiala/mysticismlogicot00russiala_bw.pdf) {{ open_access }}).

Schrater, P., Kording, K., & Blohm, G. (2019). Modeling in Neuroscience as a Decision Process. OSF Preprints. Retrieved from https://osf.io/w56vt
Schrater, P., Kording, K., & Blohm, G. (2019). Modeling in Neuroscience as a Decision Process. OSF Preprints. Retrieved from <https://osf.io/w56vt>

Simon, H. A. (1969). The sciences of the artificial MIT Press. Cambridge, MA.

Trappenberg, T. (2009). Fundamentals of computational neuroscience. OUP Oxford.

Wilson, R. C., & Collins, A. G. (2019). Ten simple rules for the computational modeling of behavioral data. Elife, 8, e49547. doi: [10.7554/eLife.49547](https://doi.org/10.7554/eLife.49547)
Wilson, R. C., & Collins, A. G. (2019). Ten simple rules for the computational modeling of behavioral data. Elife, 8, e49547. doi: [10.7554/eLife.49547](https://doi.org/10.7554/eLife.49547) {{ open_access }}



Expand Down
8 changes: 4 additions & 4 deletions tutorials/W1D3_ModelFitting/further_reading.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,9 @@

### Generic tips on model fitting in neuroscience:

Palminteri, S., Wyart, V., and Koechlin, E. (2017). The importance of falsification in computational cognitive modeling. Trends in cognitive sciences, 21(6), 425-433. doi: [10.1016/j.tics.2017.03.011](https://doi.org/10.1016/j.tics.2017.03.011).
Palminteri, S., Wyart, V., and Koechlin, E. (2017). The importance of falsification in computational cognitive modeling. Trends in cognitive sciences, 21(6), 425-433. doi: [10.1016/j.tics.2017.03.011](https://doi.org/10.1016/j.tics.2017.03.011) {{ closed_access }} (preprint: [www.biorxiv.org/content/biorxiv/early/2016/11/14/079798.full.pdf](https://www.biorxiv.org/content/biorxiv/early/2016/11/14/079798.full.pdf) {{ open_access }}).

Wilson, R. C., and Collins, A. G. (2019). Ten simple rules for the computational modeling of behavioral data. Elife, 8, e49547. doi: [10.7554/eLife.49547](https://doi.org/10.7554/eLife.49547).
Wilson, R. C., and Collins, A. G. (2019). Ten simple rules for the computational modeling of behavioral data. Elife, 8, e49547. doi: [10.7554/eLife.49547](https://doi.org/10.7554/eLife.49547) {{ open_access }}.

### On linear regression:

Expand All @@ -14,7 +14,7 @@ MacKay, D. J. (2003). Information theory, inference and learning algorithms. Cam

### On model selection:

Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79. doi: [10.1214/09-SS054](https://doi.org/10.1214/09-SS054).
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79. doi: [10.1214/09-SS054](https://doi.org/10.1214/09-SS054) {{ open_access }}.

MacKay, D. J. (2003). Information theory, inference and learning algorithms. Cambridge university press. Chapter 28 (Model selection and Occam’s razor) . Freely available at [www.inference.org.uk/itprnn](https://www.inference.org.uk/itprnn/book.pdf).

Expand All @@ -26,4 +26,4 @@ Boyd, S., Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge

### Research example developed in outro:

Wei, K., & Kording, K. (2009). Relevance of error: what drives motor adaptation?. Journal of neurophysiology, 101(2), 655-664. doi: [10.1152/jn.90545.2008](https://doi.org/10.1152/jn.90545.2008).
Wei, K., & Kording, K. (2009). Relevance of error: what drives motor adaptation?. Journal of neurophysiology, 101(2), 655-664. doi: [10.1152/jn.90545.2008](https://doi.org/10.1152/jn.90545.2008) {{ open_access }}.
Loading

0 comments on commit c53db9f

Please sign in to comment.