An intelligent, collaborative Warehouse AI System (WAIS) for document processing and warehouse management using multiple AI agents.
- Multi-agent AI system with specialized agents:
- Inventory Agent (DeepSeek)
- Operations Agent (Gemini)
- Supervisor Agent (Gemini)
- Document processing with LangChain
- Real-time system monitoring
- Interactive chat interface
- Secure API key management
- Python 3.12+
- pip (Python package manager)
- Clone the repository:
git clone https://github.com/nezpik/Pistology-WAIS.git
cd Pistology-WAIS
- Install dependencies:
pip install -r requirements.txt
- Set up environment variables:
cp .env.example .env
- Edit the
.env
file and add your API keys:
- DEEPSEEK_API_KEY
- GEMINI_API_KEY
- GEMINI_OPERATIONS_KEY
- GEMINI_SUPERVISOR_KEY
- GEMINI_INVENTORY_KEY
- Never commit the
.env
file to version control - Keep your API keys secure and never share them
- Regularly rotate your API keys
- The
.gitignore
file is set up to exclude sensitive files - All API keys are loaded from environment variables for security
Start the FastAPI server:
python main.py
The server will start on http://localhost:8000
- POST
/query
: Send queries to specific agents - GET
/status
: Get current state of all agents
import requests
# Query the inventory agent
response = requests.post("http://localhost:8000/query",
json={
"query": "Check stock levels for item A123",
"agent_type": "inventory"
}
)
# Get system status
status = requests.get("http://localhost:8000/status")
- Each agent inherits from
BaseAgent
class - TensorFlow integration available for machine learning tasks
- Supervisor agent validates decisions made by other agents
- FastAPI provides REST API interface