Skip to content

Commit

Permalink
adjusted doc to new pep8 format
Browse files Browse the repository at this point in the history
  • Loading branch information
mzwiessele committed Jun 7, 2013
1 parent fae84d6 commit 695fad4
Show file tree
Hide file tree
Showing 4 changed files with 26 additions and 26 deletions.
4 changes: 2 additions & 2 deletions doc/GPy.likelihoods.rst
Original file line number Diff line number Diff line change
Expand Up @@ -12,15 +12,15 @@ likelihoods Package
:mod:`EP` Module
----------------

.. automodule:: GPy.likelihoods.EP
.. automodule:: GPy.likelihoods.ep
:members:
:undoc-members:
:show-inheritance:

:mod:`Gaussian` Module
----------------------

.. automodule:: GPy.likelihoods.Gaussian
.. automodule:: GPy.likelihoods.gaussian
:members:
:undoc-members:
:show-inheritance:
Expand Down
42 changes: 21 additions & 21 deletions doc/GPy.models.rst
Original file line number Diff line number Diff line change
Expand Up @@ -12,71 +12,71 @@ models Package
:mod:`Bayesian_GPLVM` Module
----------------------------

.. automodule:: GPy.models.Bayesian_GPLVM
.. automodule:: GPy.models.bayesian_gplvm
:members:
:undoc-members:
:show-inheritance:

:mod:`GP` Module
:mod:`gp` Module
----------------

.. automodule:: GPy.models.GP
.. automodule:: GPy.models.gp
:members:
:undoc-members:
:show-inheritance:

:mod:`GPLVM` Module
:mod:`gplvm` Module
-------------------

.. automodule:: GPy.models.GPLVM
.. automodule:: GPy.models.gplvm
:members:
:undoc-members:
:show-inheritance:

:mod:`GP_regression` Module
:mod:`gp_regression` Module
---------------------------

.. automodule:: GPy.models.GP_regression
.. automodule:: GPy.models.gp_regression
:members:
:undoc-members:
:show-inheritance:

:mod:`sparse_GP` Module
:mod:`sparse_gp` Module
-----------------------

.. automodule:: GPy.models.sparse_GP
.. automodule:: GPy.models.sparse_gp
:members:
:undoc-members:
:show-inheritance:

:mod:`sparse_GPLVM` Module
:mod:`SparseGPLVM` Module
--------------------------

.. automodule:: GPy.models.sparse_GPLVM
.. automodule:: GPy.models.sparse_gplvm
:members:
:undoc-members:
:show-inheritance:

:mod:`sparse_GP_regression` Module
:mod:`sparse_gp_regression` Module
----------------------------------

.. automodule:: GPy.models.sparse_GP_regression
.. automodule:: GPy.models.sparse_gp_regression
:members:
:undoc-members:
:show-inheritance:

:mod:`uncollapsed_sparse_GP` Module
-----------------------------------
.. :mod:`uncollapsed_sparse_GP` Module
.. -----------------------------------
.. automodule:: GPy.models.uncollapsed_sparse_GP
:members:
:undoc-members:
:show-inheritance:
.. .. automodule:: GPy.models.uncollapsed_sparse_GP
.. :members:
.. :undoc-members:
.. :show-inheritance:
:mod:`warped_GP` Module
:mod:`warped_gp` Module
-----------------------

.. automodule:: GPy.models.warped_GP
.. automodule:: GPy.models.warped_gp
:members:
:undoc-members:
:show-inheritance:
Expand Down
4 changes: 2 additions & 2 deletions doc/tuto_GP_regression.rst
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ The parameter ``input_dim`` stands for the dimension of the input space. The par

The inputs required for building the model are the observations and the kernel::

m = GPy.models.GP_regression(X,Y,kernel)
m = GPy.models.GPRegression(X,Y,kernel)

By default, some observation noise is added to the modle. The functions ``print`` and ``plot`` give an insight of the model we have just build. The code::

Expand Down Expand Up @@ -116,7 +116,7 @@ Here is a 2 dimensional example::
ker = GPy.kern.Matern52(2,ARD=True) + GPy.kern.white(2)

# create simple GP model
m = GPy.models.GP_regression(X,Y,ker)
m = GPy.models.GPRegression(X,Y,ker)

# contrain all parameters to be positive
m.constrain_positive('')
Expand Down
2 changes: 1 addition & 1 deletion doc/tuto_kernel_overview.rst
Original file line number Diff line number Diff line change
Expand Up @@ -211,7 +211,7 @@ Note the ties between the parameters of ``Kanova`` that reflect the links betwee
Y = 0.5*X[:,:1] + 0.5*X[:,1:] + 2*np.sin(X[:,:1]) * np.sin(X[:,1:])

# Create GP regression model
m = GPy.models.GP_regression(X,Y,Kanova)
m = GPy.models.GPRegression(X,Y,Kanova)
m.plot()

.. figure:: Figures/tuto_kern_overview_mANOVA.png
Expand Down

0 comments on commit 695fad4

Please sign in to comment.