Yahoo!, Y!Finance, and Yahoo! finance are registered trademarks of Yahoo, Inc. yfinance is not affiliated, endorsed, or vetted by Yahoo, Inc. It's an open-source tool that uses Yahoo's publicly available APIs, and is intended for research and educational purposes. You should refer to Yahoo!'s terms of use (here, here, and here) for details on your rights to use the actual data downloaded. Remember - the Yahoo! finance API is intended for personal use only. |
yfinance offers a threaded and Pythonic way to download market data from Yahoo!Ⓡ finance.
→ Check out this Blog post for a detailed tutorial with code examples.
- Optimised web scraping
- All 3 financials tables now match website so expect keys to change. If you really want old tables, use
Ticker.get_[income_stmt|balance_sheet|cashflow](legacy=True, ...)
- price data improvements: fix bug NaN rows with dividend; new repair feature for missing or 100x prices
download(repair=True)
; new attributeTicker.history_metadata
See release notes for full list of changes
The Ticker
module, which allows you to access ticker data in a more Pythonic way:
import yfinance as yf
msft = yf.Ticker("MSFT")
# get stock info
msft.info
# get historical market data
hist = msft.history(period="max")
# show meta information about the history (requires history() to be called first)
msft.history_metadata
# show actions (dividends, splits, capital gains)
msft.actions
# show dividends
msft.dividends
# show splits
msft.splits
# show capital gains (for mutual funds & etfs)
msft.capital_gains
# show share count
msft.shares
msft.get_shares_full()
# show financials:
# - income statement
msft.income_stmt
msft.quarterly_income_stmt
# - balance sheet
msft.balance_sheet
msft.quarterly_balance_sheet
# - cash flow statement
msft.cashflow
msft.quarterly_cashflow
# see `Ticker.get_income_stmt()` for more options
# show major holders
msft.major_holders
# show institutional holders
msft.institutional_holders
# show mutualfund holders
msft.mutualfund_holders
# show earnings
msft.earnings
msft.quarterly_earnings
# show sustainability
msft.sustainability
# show analysts recommendations
msft.recommendations
msft.recommendations_summary
# show analysts other work
msft.analyst_price_target
msft.revenue_forecasts
msft.earnings_forecasts
msft.earnings_trend
# show next event (earnings, etc)
msft.calendar
# Show future and historic earnings dates, returns at most next 4 quarters and last 8 quarters by default.
# Note: If more are needed use msft.get_earnings_dates(limit=XX) with increased limit argument.
msft.earnings_dates
# show ISIN code - *experimental*
# ISIN = International Securities Identification Number
msft.isin
# show options expirations
msft.options
# show news
msft.news
# get option chain for specific expiration
opt = msft.option_chain('YYYY-MM-DD')
# data available via: opt.calls, opt.puts
If you want to use a proxy server for downloading data, use:
import yfinance as yf
msft = yf.Ticker("MSFT")
msft.history(..., proxy="PROXY_SERVER")
msft.get_actions(proxy="PROXY_SERVER")
msft.get_dividends(proxy="PROXY_SERVER")
msft.get_splits(proxy="PROXY_SERVER")
msft.get_capital_gains(proxy="PROXY_SERVER")
msft.get_balance_sheet(proxy="PROXY_SERVER")
msft.get_cashflow(proxy="PROXY_SERVER")
msft.option_chain(..., proxy="PROXY_SERVER")
...
To use a custom requests
session (for example to cache calls to the
API or customize the User-agent
header), pass a session=
argument to
the Ticker constructor.
import requests_cache
session = requests_cache.CachedSession('yfinance.cache')
session.headers['User-agent'] = 'my-program/1.0'
ticker = yf.Ticker('msft', session=session)
# The scraped response will be stored in the cache
ticker.actions
To initialize multiple Ticker
objects, use
import yfinance as yf
tickers = yf.Tickers('msft aapl goog')
# access each ticker using (example)
tickers.tickers['MSFT'].info
tickers.tickers['AAPL'].history(period="1mo")
tickers.tickers['GOOG'].actions
import yfinance as yf
data = yf.download("SPY AAPL", start="2017-01-01", end="2017-04-30")
I've also added some options to make life easier :)
data = yf.download( # or pdr.get_data_yahoo(...
# tickers list or string as well
tickers = "SPY AAPL MSFT",
# use "period" instead of start/end
# valid periods: 1d,5d,1mo,3mo,6mo,1y,2y,5y,10y,ytd,max
# (optional, default is '1mo')
period = "ytd",
# fetch data by interval (including intraday if period < 60 days)
# valid intervals: 1m,2m,5m,15m,30m,60m,90m,1h,1d,5d,1wk,1mo,3mo
# (optional, default is '1d')
interval = "5d",
# Whether to ignore timezone when aligning ticker data from
# different timezones. Default is False.
ignore_tz = False,
# group by ticker (to access via data['SPY'])
# (optional, default is 'column')
group_by = 'ticker',
# adjust all OHLC automatically
# (optional, default is False)
auto_adjust = True,
# attempt repair of missing data or currency mixups e.g. $/cents
repair = False,
# download pre/post regular market hours data
# (optional, default is False)
prepost = True,
# use threads for mass downloading? (True/False/Integer)
# (optional, default is True)
threads = True,
# proxy URL scheme use use when downloading?
# (optional, default is None)
proxy = None
)
When fetching price data, all dates are localized to stock exchange timezone.
But timezone retrieval is relatively slow, so yfinance attemps to cache them
in your users cache folder.
You can direct cache to use a different location with set_tz_cache_location()
:
import yfinance as yf
yf.set_tz_cache_location("custom/cache/location")
...
The following answer on Stack Overflow is for How to deal with multi-level column names downloaded with yfinance?
yfinance
returns apandas.DataFrame
with multi-level column names, with a level for the ticker and a level for the stock price data- The answer discusses:
- How to correctly read the the multi-level columns after
saving the dataframe to a csv with
pandas.DataFrame.to_csv
- How to download single or multiple tickers into a single dataframe with single level column names and a ticker column
- How to correctly read the the multi-level columns after
saving the dataframe to a csv with
- The answer discusses:
If your code uses pandas_datareader
and you want to download data
faster, you can "hijack" pandas_datareader.data.get_data_yahoo()
method to use yfinance while making sure the returned data is in the
same format as pandas_datareader's get_data_yahoo()
.
from pandas_datareader import data as pdr
import yfinance as yf
yf.pdr_override() # <== that's all it takes :-)
# download dataframe
data = pdr.get_data_yahoo("SPY", start="2017-01-01", end="2017-04-30")
Install yfinance
using pip
:
$ pip install yfinance --upgrade --no-cache-dir
To install yfinance
using conda
, see
this.
- Python >= 2.7, 3.4+
- Pandas >= 1.3.0
- Numpy >= 1.16.5
- requests >= 2.26
- lxml >= 4.9.1
- appdirs >= 1.4.4
- pytz >=2022.5
- frozendict >= 2.3.4
- beautifulsoup4 >= 4.11.1
- html5lib >= 1.1
- cryptography >= 3.3.2
- pandas_datareader >= 0.4.0
yfinance is distributed under the Apache Software License. See the LICENSE.txt file in the release for details.
AGAIN - yfinance is not affiliated, endorsed, or vetted by Yahoo, Inc. It's an open-source tool that uses Yahoo's publicly available APIs, and is intended for research and educational purposes. You should refer to Yahoo!'s terms of use (here, here, and here) for detailes on your rights to use the actual data downloaded.
Please drop me an note with any feedback you have.
Ran Aroussi