forked from google-deepmind/spiral
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdefault.py
317 lines (263 loc) · 10.8 KB
/
default.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# Copyright 2019 DeepMind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Default SPIRAL agent."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import dm_env as environment
import six
import sonnet as snt
import tensorflow as tf
from spiral.agents import utils
nest = tf.contrib.framework.nest
# Spatial action arguments need to be treated in a special way.
LOCATION_KEYS = ["end", "control"]
def _xy_grids(batch_size, height, width):
x_grid = tf.linspace(-1., 1., width, name="linspace")
x_grid = tf.reshape(x_grid, [1, 1, width, 1])
x_grid = tf.tile(x_grid, [batch_size, height, 1, 1])
y_grid = tf.linspace(-1., 1., height, name="linspace")
y_grid = tf.reshape(y_grid, [1, height, 1, 1])
y_grid = tf.tile(y_grid, [batch_size, 1, width, 1])
return x_grid, y_grid
class AutoregressiveHeads(snt.AbstractModule):
"""A module for autoregressive action heads."""
ORDERS = {
"libmypaint": ["flag", "end", "control", "size", "pressure",
"red", "green", "blue"],
}
def __init__(self,
z_dim,
embed_dim,
action_spec,
decoder_params,
order,
grid_height,
grid_width,
name="autoregressive_heads"):
super(AutoregressiveHeads, self).__init__(name=name)
self._z_dim = z_dim
self._action_spec = action_spec
self._grid_height = grid_height
self._grid_width = grid_width
# Filter the order of actions according to the actual action specification.
order = self.ORDERS[order]
self._order = [k for k in order if k in action_spec]
with self._enter_variable_scope():
self._action_embeds = collections.OrderedDict(
[(k, snt.Linear(output_size=embed_dim,
name=k + "_action_embed"))
for k in six.iterkeys(action_spec)])
self._action_heads = []
for k, v in six.iteritems(action_spec):
if k in LOCATION_KEYS:
decoder = utils.ConvDecoder( # pylint: disable=not-callable
**decoder_params)
action_head = snt.Sequential([
snt.BatchReshape([4, 4, -1]),
decoder,
snt.BatchFlatten()], name=k + "_action_head")
else:
output_size = v.maximum - v.minimum + 1
action_head = snt.Linear(
output_size=output_size, name=k + "_action_head")
self._action_heads.append((k, action_head))
self._action_heads = collections.OrderedDict(self._action_heads)
self._residual_mlps = {}
for k, v in six.iteritems(self._action_spec):
self._residual_mlps[k] = snt.nets.MLP(
output_sizes=[16, 32, self._z_dim], name=k + "_residual_mlp")
def _build(self, z):
logits = {}
action = {}
for k in self._order:
logits[k] = tf.check_numerics(
self._action_heads[k](z), "Logits for {k} are not valid")
a = tf.squeeze(tf.multinomial(logits[k], num_samples=1), -1)
a = tf.cast(a, tf.int32, name=k + "_action")
action[k] = a
depth = self._action_spec[k].maximum - self._action_spec[k].minimum + 1
# Asserts actions are valid.
assert_op = tf.assert_less_equal(a, tf.constant(depth, dtype=a.dtype))
with tf.control_dependencies([assert_op]):
if k in LOCATION_KEYS:
if depth != self._grid_height * self._grid_width:
raise AssertionError(
"Action space {depth} != grid_height * grid_width "
"{self._grid_height}x{self._grid_width}.")
w = self._grid_width
h = self._grid_height
y = -1.0 + 2.0 * tf.cast(a // w, tf.float32) / (h - 1)
x = -1.0 + 2.0 * tf.cast(a % w, tf.float32) / (w - 1)
a_vec = tf.stack([y, x], axis=1)
else:
a_vec = tf.one_hot(a, depth)
a_embed = self._action_embeds[k](a_vec)
residual = self._residual_mlps[k](tf.concat([z, a_embed], axis=1))
z = tf.nn.relu(z + residual)
action = collections.OrderedDict(
[(k, action[k]) for k in six.iterkeys(self._action_spec)])
logits = collections.OrderedDict(
[(k, logits[k]) for k in six.iterkeys(self._action_spec)])
return logits, action
class Agent(snt.AbstractModule):
"""A module for the default agent."""
def __init__(
self,
action_spec,
input_shape,
grid_shape,
action_order,
name="default"):
"""Initialises the agent."""
super(Agent, self).__init__(name=name)
self._action_order = action_order
self._action_spec = collections.OrderedDict(action_spec)
self._z_dim = 256
input_height, input_width = input_shape
self._grid_height, self._grid_width = grid_shape
enc_factor_h = input_height // 8 # Height of feature after encoding is 8
enc_factor_w = input_width // 8 # Width of feature after encoding is 8
dec_factor_h = self._grid_height // 4 # Height of feature after core is 4
dec_factor_w = self._grid_width // 4 # Width of feature after core is 4
self._encoder_params = {
"factor_h": enc_factor_h,
"factor_w": enc_factor_w,
"num_hiddens": 32,
"num_residual_layers": 8,
"num_residual_hiddens": 32,
}
self._decoder_params = {
"factor_h": dec_factor_h,
"factor_w": dec_factor_w,
"num_hiddens": 32,
"num_residual_layers": 8,
"num_residual_hiddens": 32,
"num_output_channels": 1,
}
with self._enter_variable_scope():
self._core = snt.LSTM(self._z_dim)
def initial_state(self, batch_size):
return utils.AgentState(
lstm_state=self._core.initial_state(batch_size),
prev_action=nest.map_structure(
lambda spec: tf.zeros((batch_size,) + spec.shape, dtype=spec.dtype),
self._action_spec))
def _maybe_reset_core_state(self, core_state, should_reset):
with tf.control_dependencies(None):
if should_reset.shape.is_fully_defined():
batch_size = should_reset.shape[0]
else:
batch_size = tf.shape(should_reset)[0]
initial_core_state = self._core.initial_state(batch_size)
# Use a reset state for the selected elements in the batch.
state = nest.map_structure(
lambda i, s: tf.where(should_reset, i, s),
initial_core_state, core_state)
return state
def _compute_condition(self, action, mask):
mask = tuple(mask[k] for k in self._action_spec.keys())
conds = []
action = action.values()
for k, a, m in zip(self._action_spec.keys(), action, mask):
depth = self._action_spec[k].maximum - self._action_spec[k].minimum + 1
embed = snt.Linear(16)
if k in LOCATION_KEYS:
if depth != self._grid_height * self._grid_width:
raise AssertionError(
"Action space {depth} != grid_height * grid_width "
"{self._grid_height}x{self._grid_width}.")
w = self._grid_width
h = self._grid_height
y = -1.0 + 2.0 * tf.cast(a // w, tf.float32) / (h - 1)
x = -1.0 + 2.0 * tf.cast(a % w, tf.float32) / (w - 1)
a_vec = tf.concat([y, x], axis=1)
else:
a_vec = tf.one_hot(a, depth)[:, 0, :]
cond = embed(a_vec) * m
conds.append(cond)
cond = tf.concat(conds, axis=1)
cond = snt.nets.MLP([64, 32, 32])(cond)
return cond
@snt.reuse_variables
def _torso(self,
observation,
prev_action,
should_reset):
batch_size, x_h, x_w, _ = observation["canvas"].get_shape().as_list()
x_grid, y_grid = _xy_grids(batch_size, x_h, x_w)
should_reset = tf.squeeze(should_reset, -1)
prev_action = nest.map_structure(lambda pa: tf.where( # pylint: disable=g-long-lambda
should_reset, tf.zeros_like(pa), pa), prev_action)
spatial_inputs = [observation["canvas"]]
spatial_inputs += [x_grid, y_grid]
data = tf.concat(spatial_inputs, axis=-1)
with tf.variable_scope("torso"):
h = snt.Conv2D(32, [5, 5])(data)
# Compute conditioning vector based on the previously taken action.
prev_action = nest.map_structure(
lambda pa: tf.expand_dims(pa, -1), prev_action)
cond = self._compute_condition(prev_action, observation["action_mask"])
# Adjust the conditioning vector according to the noise sample
# provided to the model. This is inspired by the original GAN framework.
# NOTE: Unlike in normal GANs, this noise sample is not the only source
# of stochasticity. Stochastic actions contribute as well.
assert observation["noise_sample"].shape.ndims == 2
cond += snt.nets.MLP([64, 32, 32])(observation["noise_sample"])
cond = tf.reshape(cond, [batch_size, 1, 1, -1])
h += cond
h = tf.nn.relu(h)
encoder = utils.ConvEncoder(**self._encoder_params)
h = snt.BatchFlatten()(encoder(h))
h = snt.Linear(256)(tf.nn.relu(h))
return h
@snt.reuse_variables
def _head(self, core_output):
with tf.variable_scope("head"):
head = AutoregressiveHeads(
z_dim=self._z_dim,
embed_dim=16,
action_spec=self._action_spec,
grid_height=self._grid_height,
grid_width=self._grid_width,
decoder_params=self._decoder_params,
order=self._action_order)
logits, actions = head( # pylint: disable=not-callable
core_output)
baseline = tf.squeeze(snt.Linear(1)(core_output), -1)
return utils.AgentOutput(actions, logits, baseline)
def step(self,
step_type,
observation,
prev_state):
"""Computes a single step of the agent."""
with self._capture_variables():
should_reset = tf.equal(step_type, environment.StepType.FIRST)
torso_output = self._torso(
observation,
prev_state.prev_action,
should_reset)
lstm_state = self._maybe_reset_core_state(
prev_state.lstm_state, should_reset)
core_output, new_core_state = self._core(torso_output, lstm_state)
agent_output = self._head(core_output)
new_state = utils.AgentState(
prev_action=agent_output.action,
lstm_state=new_core_state)
return agent_output, new_state
def _build(self, *args): # Unused.
# pylint: disable=no-value-for-parameter
return self.step(*args)
# pylint: enable=no-value-for-parameter