Skip to content

Commit

Permalink
refactor onnxruntime integration (huggingface#2042)
Browse files Browse the repository at this point in the history
* refactor onnxruntime integration

* fix requirements.txt bug

* make style

* add support for textual_inversion

* make style

* add readme

* cleanup README files

* 1/27/2023 update to training scripts

* make style

* 1/30 update to train_unconditional

* style with black-22.8.0

---------

Co-authored-by: Prathik Rao <[email protected]>
Co-authored-by: anton- <[email protected]>
  • Loading branch information
3 people authored Feb 3, 2023
1 parent ecadcde commit a87e87f
Show file tree
Hide file tree
Showing 11 changed files with 1,889 additions and 63 deletions.
5 changes: 5 additions & 0 deletions examples/research_projects/onnxruntime/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
## Diffusers examples with ONNXRuntime optimizations

**This research project is not actively maintained by the diffusers team. For any questions or comments, please contact Prathik Rao (prathikr), Sunghoon Choi (hanbitmyths), Ashwini Khade (askhade), or Peng Wang (pengwa) on github with any questions.**

This aims to provide diffusers examples with ONNXRuntime optimizations for training/fine-tuning unconditional image generation, text to image, and textual inversion. Please see individual directories for more details on how to run each task using ONNXRuntime.
74 changes: 74 additions & 0 deletions examples/research_projects/onnxruntime/text_to_image/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
# Stable Diffusion text-to-image fine-tuning

The `train_text_to_image.py` script shows how to fine-tune stable diffusion model on your own dataset.

___Note___:

___This script is experimental. The script fine-tunes the whole model and often times the model overfits and runs into issues like catastrophic forgetting. It's recommended to try different hyperparamters to get the best result on your dataset.___


## Running locally with PyTorch
### Installing the dependencies

Before running the scripts, make sure to install the library's training dependencies:

**Important**

To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:
```bash
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install .
```

Then cd in the example folder and run
```bash
pip install -r requirements.txt
```

And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with:

```bash
accelerate config
```

### Pokemon example

You need to accept the model license before downloading or using the weights. In this example we'll use model version `v1-4`, so you'll need to visit [its card](https://huggingface.co/CompVis/stable-diffusion-v1-4), read the license and tick the checkbox if you agree.

You have to be a registered user in 🤗 Hugging Face Hub, and you'll also need to use an access token for the code to work. For more information on access tokens, please refer to [this section of the documentation](https://huggingface.co/docs/hub/security-tokens).

Run the following command to authenticate your token

```bash
huggingface-cli login
```

If you have already cloned the repo, then you won't need to go through these steps.

<br>

## Use ONNXRuntime to accelerate training
In order to leverage onnxruntime to accelerate training, please use train_text_to_image.py

The command to train a DDPM UNetCondition model on the Pokemon dataset with onnxruntime:

```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export dataset_name="lambdalabs/pokemon-blip-captions"
accelerate launch --mixed_precision="fp16" train_text_to_image.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--dataset_name=$dataset_name \
--use_ema \
--resolution=512 --center_crop --random_flip \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--gradient_checkpointing \
--max_train_steps=15000 \
--learning_rate=1e-05 \
--max_grad_norm=1 \
--lr_scheduler="constant" --lr_warmup_steps=0 \
--output_dir="sd-pokemon-model"
```

Please contact Prathik Rao (prathikr), Sunghoon Choi (hanbitmyths), Ashwini Khade (askhade), or Peng Wang (pengwa) on github with any questions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
accelerate
torchvision
transformers>=4.25.1
datasets
ftfy
tensorboard
modelcards
Loading

0 comments on commit a87e87f

Please sign in to comment.