The following repository will allow you to leverage Tensorflow Object Detection models that have been converted to TFLite on a Raspberry Pi. This accompanies the Tensorflow Object Detection course on my YouTube channel.
Step 1. Walk through TFOD tutorial up to step 12 to generate TFLite files: https://github.com/nicknochnack/TFODCourse
Step 2. Clone the current repository onto your Raspberry Pi or copy it from a machine using RDP.
git clone https://github.com/nicknochnack/TFODRPi
Step 3.Install the required dependencies onto your Raspberry Pi
pip3 install opencv-python sudo apt-get install libcblas-dev sudo apt-get install libhdf5-dev sudo apt-get install libhdf5-serial-dev sudo apt-get install libatlas-base-dev sudo apt-get install libjasper-dev sudo apt-get install libqtgui4 sudo apt-get install libqt4-testv echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add - sudo apt-get update sudo apt-get install python3-tflite-runtime
Step 4. Copy your detect.tflite model into the same repository and update the labels.txt file to represent your labels.
Step 5. Run real time detections using the detect.py script
python3 detect.py