Code for Clues Before Answers: Generation-Enhanced Multiple-Choice QA (NAACL 2022)
We propose a generation-enhanced multiple-choice QA model named GenMC. It generates a clue from the question and then leverages the clue to enhance a reader for multiple-choice QA.
GenMC is the first model achieving human performance in the commonsense challenge dataset OpenBookQA.
pip install -r requirements.txt
python run_genmc.py \
--model_path $DATA_PATH$ \
--choice_num $Choice_Num$ \
--data_path_train $TRAIN_FILE$ \
--data_path_dev $DEV_FILE$ \
--data_path_test $TEST_FILE$
Example:
python run_genmc.py --model_path t5-base --choice_num 5 --data_path_train ./data/csqa/in_house/train.jsonl --data_path_dev ./data/csqa/in_house/dev.jsonl --data_path_test ./data/csqa/in_house/test.jsonl
Please cite this paper in your publications if it helps your research:
@inproceedings{DBLP:conf/naacl/HuangWZGZ022,
author = {Zixian Huang and
Ao Wu and
Jiaying Zhou and
Yu Gu and
Yue Zhao and
Gong Cheng},
editor = {Marine Carpuat and
Marie{-}Catherine de Marneffe and
Iv{\'{a}}n Vladimir Meza Ru{\'{\i}}z},
title = {Clues Before Answers: Generation-Enhanced Multiple-Choice {QA}},
booktitle = {Proceedings of the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
{NAACL} 2022, Seattle, WA, United States, July 10-15, 2022},
pages = {3272--3287},
publisher = {Association for Computational Linguistics},
year = {2022},
url = {https://aclanthology.org/2022.naacl-main.239},
timestamp = {Fri, 15 Jul 2022 14:51:04 +0200},
biburl = {https://dblp.org/rec/conf/naacl/HuangWZGZ022.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}