Source code for ISWC-2019 paper "TransEdge: Translating Relation-contextualized Embeddings for Knowledge Graphs".
- For entity alignment, we use two datasets DBP15K and DWY100K. DBP15K can be downloaded from JAPE and DWY100K is from BootEA.
- For link prediction, we use two datasets FB15k-237 and WN18RR, which can be downloaded from ConvE.
- "transedge_ea.py" is the implementation of TransEdge for entity alignment;
- "transedge_lp.py" is the implementation of TransEdge for link prediction.
- Python 3
- Tensorflow 1.x
- Scipy
- Numpy
- Pandas
- Graph-tool (It is recommended to follow the offical instruction to install graph-tool.)
For example, to run TransEdge-CP (w/o semi) on DBP15K ZH-EN, use the following script (supposed that the dataset has been downloaded into the folder '../data/'):
python3 transedge_ea.py --mode 'projection' \
--data_dir '../data/DBP15K/zh_en/0_3/' \
--ent_norm True \
--rel_norm True \
--op_is_norm True \
--embedding_dim 75 \
--pos_margin 0.2 \
--neg_margin 2.0 \
--neg_param 0.8 \
--n_neg_triple 20 \
--truncated_epsilon 0.95 \
--mlp_layers 1 \
--learning_rate 0.01 \
--batch_size 2000 \
--max_epoch 1000 \
--frequency 5 \
To run TransEdge-CP on DBP15K ZH-EN, use the following script:
python3 transedge_ea.py --mode 'projection' \
--data_dir '../data/DBP15K/zh_en/0_3/' \
--ent_norm True \
--rel_norm True \
--op_is_norm True \
--embedding_dim 75 \
--pos_margin 0.2 \
--neg_margin 2.0 \
--neg_param 0.8 \
--n_neg_triple 20 \
--truncated_epsilon 0.95 \
--mlp_layers 1 \
--learning_rate 0.01 \
--batch_size 2000 \
--max_epoch 1000 \
--frequency 5 \
--is_bp True \
--sim_th 0.7 \
--top_k 10 \
--op_is_tanh True
To run TransEdge-CP on WN18RR, use the following script:
python3 transedge_lp.py --mode 'projection' \
--data_dir '../data/WN18RR/' \
--embedding_dim 500 \
--pos_margin 0.2 \
--neg_margin 3.5 \
--neg_param 0.5 \
--n_neg_triple 30 \
--truncated_epsilon 1.0 \
--truncated_frequency 10 \
--mlp_layers 2 \
--learning_rate 0.01 \
--batch_size 2000 \
--max_epoch 500 \
--eval_freq 10 \
If you have any difficulty or question in running code and reproducing experimental results, please email to [email protected] and [email protected].
The link prediction version of TransEdge is implemented based on the open-source code of TransE.
If you use our model or code, please kindly cite it as follows:
@inproceedings{TransEdge,
author = {Zequn Sun and Jiacheng Huang and Wei Hu and Muhao Chen and Lingbing Guo and Yuzhong Qu},
title = {TransEdge: Translating Relation-Contextualized Embeddings for Knowledge Graphs},
booktitle = {ISWC},
pages = {612--629},
year = {2019}
}