-
Notifications
You must be signed in to change notification settings - Fork 0
Code for relation extraction
License
nmquang003/CRE
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
# An Ensemble-of-Experts Framework for Rehearsal-free Continual Relation Extraction Code and data of our paper "An Ensemble-of-Experts Framework for Rehearsal-free Continual Relation Extraction" accepted by Findings of ACL 2024. ## Usage of Code ### 1.1 Environment Reuqirement Python=3.9.18 ```bash pip install -r requirements.txt ``` ### 1.2 train the first task ```bash python main.py \ +task_args=<DATASET> \ +training_args=Expert \ task_args.model_name_or_path=<MODEL_PATH> \ task_args.config_name=<MODEL_PATH> \ task_args.tokenizer_name=<MODEL_PATH> ``` ### 1.3 train subsequent tasks ```bash python main.py \ +task_args=<DATASET> \ +training_args=EoE \ task_args.model_name_or_path=<MODEL_PATH> \ task_args.config_name=<MODEL_PATH> \ task_args.tokenizer_name=<MODEL_PATH> ``` `Note that <DATASET> denotest the datasets [FewRel, TACRED], <MODEL_PATH> denotes the path of "bert-base-uncased". `
About
Code for relation extraction
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published