forked from e2nIEE/pandapower
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b509a75
commit 599d080
Showing
1 changed file
with
182 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,182 @@ | ||
import pandapower as pp | ||
import pytest | ||
from numpy import array | ||
|
||
@pytest.fixture() | ||
def base_net(): | ||
net = pp.create_empty_network() | ||
pp.create_bus(net, vn_kv=10) | ||
pp.create_bus(net, vn_kv=10) | ||
pp.create_ext_grid(net, 0) | ||
pp.create_load(net, 1, p_kw=200, controllable=False) | ||
pp.create_line_from_parameters(net, 0, 1, 50, name="line", r_ohm_per_km=0.876, | ||
c_nf_per_km=260.0, max_i_ka=0.123, x_ohm_per_km=0.1159876, | ||
max_loading_percent=100 * 690) | ||
|
||
pp.runpp(net) | ||
return net | ||
|
||
def test_contingency_sgen(base_net): | ||
|
||
net = base_net | ||
pp.create_sgen(net, 1, p_kw=-100, q_kvar =0, controllable=True, max_p_kw=-5, min_p_kw=-150, max_q_kvar=50, | ||
min_q_kvar=-50) | ||
# pwl costs | ||
# maximize the sgen feed in by using a positive cost slope | ||
# using a slope of 1 | ||
# | / | ||
# | / | ||
# | / | ||
# |/ | ||
#------------------------------------------- | ||
# p_min_kw /| | ||
# / | | ||
# / | | ||
|
||
pp.create_piecewise_linear_cost(net, 0, "sgen", array([[net.sgen.min_p_kw.at[0], net.sgen.min_p_kw.at[0]], [0, 0]])) | ||
pp.runopp(net) | ||
|
||
|
||
assert abs(net.res_cost - net.res_sgen.p_kw.at[0]) < 1e-5 | ||
# minimize the sgen feed in by using a positive cost slope | ||
# using a slope of 1 | ||
# \ | | ||
# \ | | ||
# \ | | ||
# \| | ||
#------------------------------------------- | ||
# p_min_kw |\ | ||
# | \ | ||
# | \ | ||
net.piecewise_linear_cost.f.at[0] *= -1 | ||
pp.runopp(net) | ||
|
||
print(net.res_cost) | ||
print(net.res_sgen.p_kw) | ||
|
||
assert abs(net.res_cost - net.res_sgen.p_kw.at[0]*-1) < 1e-5 | ||
|
||
net.piecewise_linear_cost = net.piecewise_linear_cost.drop(index=0) | ||
|
||
# first using a positive slope as in the case above | ||
pp.create_polynomial_cost(net, 0, "sgen", array([1, 0])) | ||
pp.runopp(net) | ||
assert abs(net.res_cost - net.res_sgen.p_kw.at[0]) < 1e-5 | ||
|
||
# negative slope as in the case above | ||
net.polynomial_cost.c.at[0] *= -1 | ||
pp.runopp(net) | ||
|
||
assert abs(net.res_cost - net.res_sgen.p_kw.at[0]*-1) < 1e-5 | ||
|
||
|
||
def test_contingency_load(base_net): | ||
net = base_net | ||
pp.create_load(net, 1, p_kw=-100, q_kvar=0, controllable=True, max_p_kw=150, min_p_kw=5, | ||
max_q_kvar=50, | ||
min_q_kvar=-50) | ||
# pwl costs | ||
# minimze the load by using a positive cost slope | ||
# using a slope of 1 | ||
# | / | ||
# | / | ||
# | / | ||
# |/ | ||
# ------------------------------------------- | ||
# p_min_kw /| | ||
# / | | ||
# / | | ||
|
||
pp.create_piecewise_linear_cost(net, 1, "load", array( | ||
[[0, 0],[net.load.max_p_kw.at[1], net.load.max_p_kw.at[1]]])) | ||
pp.runopp(net) | ||
|
||
assert abs(net.res_cost - net.res_load.p_kw.at[1]) < 1e-5 | ||
# maximize the load in by using a negative cost slope | ||
# using a slope of 1 | ||
# \ | | ||
# \ | | ||
# \ | | ||
# \| | ||
# ------------------------------------------- | ||
# p_min_kw |\ | ||
# | \ | ||
# | \ | ||
net.piecewise_linear_cost.f.at[0] *= -1 | ||
pp.runopp(net) | ||
|
||
print(net.res_cost) | ||
print(net.res_load.p_kw) | ||
|
||
assert abs(net.res_cost - net.res_load.p_kw.at[1] * -1) < 1e-5 | ||
|
||
# poly costs | ||
|
||
net.piecewise_linear_cost = net.piecewise_linear_cost.drop(index=0) | ||
|
||
# first using a positive slope as in the case above | ||
pp.create_polynomial_cost(net, 1, "load", array([1, 0])) | ||
pp.runopp(net) | ||
assert abs(net.res_cost - net.res_load.p_kw.at[1]) < 1e-5 | ||
|
||
# negative slope as in the case above | ||
net.polynomial_cost.c.at[0] *= -1 | ||
pp.runopp(net) | ||
|
||
assert abs(net.res_cost - net.res_load.p_kw.at[1]*-1) < 1e-5 | ||
|
||
|
||
def test_contingency_gen(base_net): | ||
|
||
net = base_net | ||
pp.create_gen(net, 1, p_kw=-100, vm_pu = 1.05, controllable=True, max_p_kw=-5, min_p_kw=-150, max_q_kvar=50, | ||
min_q_kvar=-50) | ||
# pwl costs | ||
# maximize the sgen feed in by using a positive cost slope | ||
# using a slope of 1 | ||
# | / | ||
# | / | ||
# | / | ||
# |/ | ||
#------------------------------------------- | ||
# p_min_kw /| | ||
# / | | ||
# / | | ||
|
||
pp.create_piecewise_linear_cost(net, 0, "gen", array([[net.gen.min_p_kw.at[0], net.gen.min_p_kw.at[0]], [0, 0]])) | ||
pp.runopp(net) | ||
|
||
|
||
assert abs(net.res_cost - net.res_gen.p_kw.at[0]) < 1e-5 | ||
# minimize the sgen feed in by using a positive cost slope | ||
# using a slope of 1 | ||
# \ | | ||
# \ | | ||
# \ | | ||
# \| | ||
#------------------------------------------- | ||
# p_min_kw |\ | ||
# | \ | ||
# | \ | ||
net.piecewise_linear_cost.f.at[0] *= -1 | ||
pp.runopp(net) | ||
|
||
assert abs(net.res_cost - net.res_gen.p_kw.at[0]*-1) < 1e-5 | ||
|
||
net.piecewise_linear_cost = net.piecewise_linear_cost.drop(index=0) | ||
|
||
# first using a positive slope as in the case above | ||
pp.create_polynomial_cost(net, 0, "gen", array([1, 0])) | ||
pp.runopp(net) | ||
assert abs(net.res_cost - net.res_gen.p_kw.at[0]) < 1e-5 | ||
|
||
# negative slope as in the case above | ||
net.polynomial_cost.c.at[0] *= -1 | ||
pp.runopp(net) | ||
|
||
assert abs(net.res_cost - net.res_gen.p_kw.at[0]*-1) < 1e-5 | ||
|
||
if __name__ == "__main__": | ||
# net = base_net() | ||
# test_contingency_gen(net) | ||
pytest.main(['-s', __file__]) |