Skip to content

Inference algorithms for models based on Luce's choice axiom

License

Notifications You must be signed in to change notification settings

notthatanonymous/choix

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

81 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

choix

build status code coverage documentation status

choix is a Python library that provides inference algorithms for models based on Luce's choice axiom. These probabilistic models can be used to explain and predict outcomes of comparisons between items.

  • Pairwise comparisons: when the data consists of comparisons between two items, the model variant is usually referred to as the Bradley-Terry model. It is closely related to the Elo rating system used to rank chess players.
  • Partial rankings: when the data consists of rankings over (a subset of) the items, the model variant is usually referred to as the Plackett-Luce model.
  • Top-1 lists: another variation of the model arises when the data consists of discrete choices, i.e., we observe the selection of one item out of a subset of items.
  • Choices in a network: when the data consists of counts of the number of visits to each node in a network, the model is known as the Network Choice Model.

choix makes it easy to infer model parameters from these different types of data, using a variety of algorithms:

  • Luce Spectral Ranking
  • Minorization-Maximization
  • Rank Centrality
  • Approximate Bayesian inference with expectation propagation

Getting started

To install the latest release directly from PyPI, simply type:

pip install choix

To get started, you might want to explore one of these notebooks:

You can also find more information on the official documentation. In particular, the API reference contains a good summary of the library's features.

References

About

Inference algorithms for models based on Luce's choice axiom

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 50.1%
  • Jupyter Notebook 49.9%