Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Remove old Bu2019lm pickle file and updates to installation documentation #105

Draft
wants to merge 319 commits into
base: main
Choose a base branch
from
Draft
Changes from 1 commit
Commits
Show all changes
319 commits
Select commit Hold shift + click to select a range
7073191
Fix PL_BB_fixedT 4
Mar 23, 2022
93689c4
Add gaussian-process-api as an interpolation option
mcoughlin Apr 5, 2022
440233f
Add rubin-ToO as an option
mcoughlin Apr 14, 2022
2a3cfc0
Merge branch 'main' of github.com:nuclear-multimessenger-astronomy/nmma
mcoughlin Apr 14, 2022
7734db4
Add ability to read .dat files
mcoughlin Apr 14, 2022
22a52ef
adding too lims
Apr 14, 2022
cdeccea
Merge pull request #22 from niharika-sravan/main
mcoughlin Apr 14, 2022
59d8210
Working on ToOs
mcoughlin Apr 14, 2022
e84e851
fixing mag lim issues
Apr 15, 2022
527067d
Merge pull request #23 from niharika-sravan/main
mcoughlin Apr 15, 2022
4447cd5
Remove filters with data not simulated
mcoughlin Apr 15, 2022
b0c1074
Bug fix in case of missing filters
mcoughlin Apr 15, 2022
d0c537f
Keep upperlimits
mcoughlin Apr 15, 2022
2c7c8dc
installation file modified
ritwiksharma049 Apr 18, 2022
103996f
Merge pull request #25 from ritwiksharma049/file
mcoughlin Apr 18, 2022
8ec26af
Adding Rahul's contribution
tsunhopang Apr 19, 2022
9656822
Fix typo in recommended package
mcoughlin Apr 19, 2022
d707f81
Merge branch 'main' of github.com:nuclear-multimessenger-astronomy/nmma
mcoughlin Apr 19, 2022
5ac992b
ztf command line fixed
ritwiksharma049 Apr 23, 2022
7155a82
prior file changed in command line
ritwiksharma049 Apr 24, 2022
3c88ec0
Merge pull request #27 from ritwiksharma049/docfix
mcoughlin Apr 24, 2022
06b68d1
Add ability to train a "CV" model based on example objects
mcoughlin Apr 25, 2022
a3d8a30
Merge branch 'main' of github.com:nuclear-multimessenger-astronomy/nmma
mcoughlin Apr 25, 2022
bbf50a6
GRB211211A
mcoughlin Apr 26, 2022
635fc2c
no header
mcoughlin Apr 26, 2022
f166e5d
Update docs
mcoughlin Apr 26, 2022
283c8af
Add Bu2019nsbh as a training option
mcoughlin Apr 26, 2022
8ca7bd7
Add Bu2019nsbh prior file
mcoughlin Apr 26, 2022
2a2fb97
short and long grb priors
tahumada Apr 27, 2022
142509f
Merge pull request #28 from tahumada/main
mcoughlin Apr 27, 2022
11dbf2e
Merge branch 'main' into gp-api
mcoughlin Apr 27, 2022
3887821
Merge pull request #19 from mcoughlin/gp-api
mcoughlin Apr 27, 2022
15674eb
readme file modified
ritwiksharma049 Apr 27, 2022
49c482f
Merge pull request #29 from ritwiksharma049/readm
mcoughlin Apr 27, 2022
e556cdd
Include legend with all models when doing multi-modal fitting
mcoughlin May 5, 2022
6361255
Enable training of spectral models
mcoughlin May 19, 2022
bd7fd3c
Fix training tests
mcoughlin May 19, 2022
09bd919
minor changes to ensure interrow changes are handed to df sim and to …
May 20, 2022
d9f5204
clean up!
May 20, 2022
f2dadbd
Merge pull request #33 from niharika-sravan/main
mcoughlin May 20, 2022
3103e2d
Add simple prior file
mcoughlin May 20, 2022
395e212
Merge branch 'main' of github.com:nuclear-multimessenger-astronomy/nmma
mcoughlin May 20, 2022
31d2c11
Add ability to have different systematic error per filter
mcoughlin May 23, 2022
a6325b6
added descriptions in gwem_resampling.py and gwsamples_creation.py
May 24, 2022
e1df197
Merge pull request #35 from ninakuni/main
mcoughlin May 24, 2022
538d138
Fix error budget in case of upper limits
mcoughlin May 25, 2022
8c779ad
making too.csv output optional
May 30, 2022
e0eee7b
Merge pull request #37 from niharika-sravan/main
mcoughlin May 31, 2022
ee7570c
pymultinest instructions changed
ritwiksharma049 Jun 8, 2022
5e7068d
second commit on installation doc
ritwiksharma049 Jun 8, 2022
bde7b31
Merge pull request #39 from ritwiksharma049/readm
mcoughlin Jun 8, 2022
b630475
fix ref before assignment
dfinstad Jun 22, 2022
731cef4
remove extra chars
dfinstad Jun 22, 2022
b998802
Merge pull request #41 from dfinstad/fix_reqs
mcoughlin Jun 22, 2022
fcaf2ee
Merge pull request #40 from dfinstad/fix_em_analysis_vars
mcoughlin Jun 22, 2022
319eca9
switch to using tf model call
dfinstad Jun 22, 2022
0613ced
Merge pull request #42 from dfinstad/use_tf_model_call
mcoughlin Jun 23, 2022
cd216fd
Update docs with an additional example using the prior
Jun 29, 2022
1c1cc15
Merge pull request #43 from atoivonen13/docs
mcoughlin Jun 29, 2022
5148e0b
Make parameters more optional
mcoughlin Jun 30, 2022
bb4c15f
Refactor nmma.em.analysis
mcoughlin Jul 5, 2022
48ff87c
Raise minimum astropy version
mcoughlin Jul 5, 2022
795ab5b
Fix the intrinsic parameters
mcoughlin Jul 6, 2022
a89404c
revert to an earlier version of astropy
weizmannk Jul 10, 2022
48c9af9
Merge pull request #46 from weizmannk/main
mcoughlin Jul 10, 2022
98962d1
paralle_bilby typo on installation
weizmannk Jul 11, 2022
7bc86ae
Merge pull request #47 from weizmannk/main
mcoughlin Jul 11, 2022
aa9796c
Add SALT2
mcoughlin Jul 11, 2022
4e458bd
erge branch 'main' of github.com:nuclear-multimessenger-astronomy/nmma
mcoughlin Jul 11, 2022
c9d245d
Nina's TF files
mcoughlin Jul 15, 2022
55c0dc1
Add --optimal-augmentation-times as an option
mcoughlin Jul 16, 2022
2581c1e
Rename optimal -> photometry
mcoughlin Jul 16, 2022
7d1fded
Update fitting.md
atoivonen13 Jul 18, 2022
fe24db6
Merge pull request #48 from atoivonen13/docs
mcoughlin Jul 18, 2022
4b47dbf
Remove constant columns from corner plot
mcoughlin Jul 19, 2022
5b5a4a0
Merge branch 'main' of github.com:nuclear-multimessenger-astronomy/nmma
mcoughlin Jul 19, 2022
abc634f
Add request_disk to condor file
Jul 19, 2022
7f0bca1
Use f-strings
Jul 19, 2022
3008884
Add condor script
weizmannk Jul 20, 2022
b8e9014
new update of nmma's intallation
weizmannk Jul 20, 2022
ebf6ada
Merge pull request #50 from weizmannk/light-curve-analysis-condor
mcoughlin Jul 20, 2022
e7ceedf
Do not quit loop if some filter is nan
mcoughlin Jul 23, 2022
16a0ca0
Merge branch 'main' of github.com:nuclear-multimessenger-astronomy/nmma
mcoughlin Jul 23, 2022
a3a511c
A check on astropy version
mcoughlin Jul 23, 2022
3f5a43c
Upload GW prior file
mcoughlin Jul 28, 2022
a39a9e3
Update bilby requirement
mcoughlin Aug 17, 2022
ad3c82f
Merge pull request #51 from mcoughlin/bilby-requirement
mcoughlin Aug 18, 2022
aab2311
Update LICENSE
mcoughlin Aug 19, 2022
4272133
Merge branch 'main' of github.com:nuclear-multimessenger-astronomy/nmma
mcoughlin Aug 19, 2022
cb2367c
Update versions
mcoughlin Aug 19, 2022
ac1ac0e
make afterglowpy optional
mcoughlin Aug 19, 2022
bce2cea
Explicitly install pyafterglow for testing
mcoughlin Aug 19, 2022
d11a88b
misnamed dependency
mcoughlin Aug 19, 2022
b0cb1d6
Ok we can do 3.7 a bit longer
mcoughlin Aug 19, 2022
e34620e
Fail more gracefully for optional arguments
mcoughlin Aug 22, 2022
35322d6
Update to v0.0.8
mcoughlin Aug 22, 2022
98485d7
Adding a rubin flag
weizmannk Aug 24, 2022
6abfcb8
Merge pull request #52 from weizmannk/main
mcoughlin Aug 24, 2022
b0b132b
Break if all nan
mcoughlin Aug 26, 2022
6156c7b
Merge branch 'main' of github.com:nuclear-multimessenger-astronomy/nmma
mcoughlin Aug 26, 2022
69a1341
By default, save files separately when training
mcoughlin Sep 21, 2022
6759e11
Make the inference step agnostic to filter list
mcoughlin Sep 21, 2022
1d8f463
NSBH GWEMresampling
Oct 21, 2022
d090332
Merge pull request #54 from ninakuni/main
mcoughlin Oct 21, 2022
6950629
EOS weighting functions
Oct 21, 2022
15aae5f
Merge branch 'nuclear-multimessenger-astronomy:main' into eosweighting
ninakuni Oct 21, 2022
32a31b6
Merge pull request #55 from ninakuni/eosweighting
mcoughlin Oct 21, 2022
14dc680
Add files via upload
ninakuni Oct 27, 2022
d6d806f
Merge pull request #1 from ninakuni/ninakuni-patch-1
ninakuni Oct 27, 2022
b2f6769
Add files via upload
ninakuni Oct 27, 2022
cd0460c
Merge pull request #2 from ninakuni/ninakuni-patch-2
ninakuni Oct 27, 2022
5896032
Add files via upload
ninakuni Oct 27, 2022
af73d03
Merge pull request #3 from ninakuni/ninakuni-patch-3
ninakuni Oct 27, 2022
13ae00b
Create GW-EM-resampling.md
ninakuni Oct 27, 2022
2e7adcd
Merge pull request #4 from ninakuni/ninakuni-patch-1-1
ninakuni Oct 27, 2022
17950ee
GWEMresampling docs, files, tools
Oct 27, 2022
a8f0fe2
Delete example_files/tools/gwem_resampling/15nsat_cse_uniform_R14 dir…
ninakuni Oct 27, 2022
02719e9
prior mv to priorsdir
Oct 28, 2022
c35e14c
Merge pull request #57 from ninakuni/gwemresampling_docs
mcoughlin Oct 28, 2022
0621e70
Delete corner_samples.jpg
ninakuni Oct 29, 2022
67a0962
corner_samples.png file
ninakuni Oct 29, 2022
aea45a4
Update index.rst
ninakuni Oct 29, 2022
37fd6e4
Update GW-EM-resampling.md
ninakuni Oct 29, 2022
e7f941f
Update GW-EM-resampling.md
ninakuni Oct 29, 2022
672e443
Update GW-EM-resampling.md
ninakuni Oct 29, 2022
5ba0fb1
Merge pull request #58 from ninakuni/gwemresampling_docs
mcoughlin Oct 29, 2022
4827b64
add training data for latest Bulla model
shreyasahasram08 Nov 3, 2022
544d9f9
fix scikit-learn version at 1.0.2
weizmannk Nov 29, 2022
7340521
update the ZTF cadence
weizmannk Nov 29, 2022
09f82ba
add scikit-learn=1.0.2
weizmannk Nov 29, 2022
a43ad16
Merge pull request #59 from weizmannk/main
weizmannk Nov 29, 2022
9e7ef4a
Use astropy for speed_of_light constant
mcoughlin Jan 4, 2023
b9d8626
Merge pull request #60 from mcoughlin/speed_of_light
mcoughlin Jan 4, 2023
0db3db5
update ToO lims
weizmannk Jan 19, 2023
107d894
Merge pull request #61 from weizmannk/main
mcoughlin Jan 19, 2023
cf9b305
Corrected code line in combined_analysis.md
ritwiksharma049 Jan 24, 2023
c9ffe24
Merge pull request #62 from ritwiksharma049/main
weizmannk Jan 24, 2023
30d10f9
Add manual plot option
mcoughlin Feb 4, 2023
ddb5f14
Fix plotting to be in requested order
mcoughlin Feb 4, 2023
b80ae75
Add files via upload
FabioRagosta Feb 9, 2023
2b81123
Delete Tutorial_nmmalcsimulator.ipynb
FabioRagosta Feb 9, 2023
9b19ca4
Create README.md
FabioRagosta Feb 9, 2023
26ed1ef
Add files via upload
FabioRagosta Feb 9, 2023
7358196
Update README.md
FabioRagosta Feb 9, 2023
374356c
Update lightcurve detection script
weizmannk Feb 9, 2023
b71ffa9
Update create lightcurve
weizmannk Feb 9, 2023
d08ac84
Add events ID in bilby injection file
weizmannk Feb 9, 2023
61dbd33
Update create lightcurve
weizmannk Feb 9, 2023
ca03e64
validated lightcurve sim tutorial
tylerbarna Feb 9, 2023
393e2f1
Merge pull request #64 from weizmannk/main
mcoughlin Feb 9, 2023
4cc8d61
Merge pull request #63 from FabioRagosta/main
mcoughlin Feb 10, 2023
c3b97db
Pin scipy version to 1.9.3
weizmannk Feb 16, 2023
3c3edfd
Pin scipy version to 1.9.3
weizmannk Feb 16, 2023
0d92178
Update setup.py
mcoughlin Feb 16, 2023
5ab8b8f
Update requirements.txt
mcoughlin Feb 16, 2023
e37df71
Merge pull request #66 from weizmannk/main
mcoughlin Feb 17, 2023
7f60479
cluster jobscript and quick start fix.
ritwiksharma049 Feb 21, 2023
32139cd
Merge pull request #68 from ritwiksharma049/cluster
mcoughlin Feb 21, 2023
94ab39d
expanse script indexed and README.md corrected
ritwiksharma049 Feb 22, 2023
5c6ebdb
Merge pull request #70 from ritwiksharma049/cluster1
mcoughlin Feb 22, 2023
74f7881
check for parameter definitions
mcoughlin Feb 24, 2023
80b4655
fix lightcurve plot
mcoughlin Feb 24, 2023
2f579bf
Peter's flags added on request
ritwiksharma049 Mar 4, 2023
0cf12d3
Peter's changes added
ritwiksharma049 Mar 4, 2023
798874b
Peter's changes added
ritwiksharma049 Mar 4, 2023
f4a65cc
.priors changed to .prior
ritwiksharma049 Mar 5, 2023
7dec68b
Merge pull request #71 from ritwiksharma049/enlil
weizmannk Mar 5, 2023
2ab083f
add filter check in ztf sampling
tylerbarna Mar 5, 2023
16ce829
Merge branch 'possis-update' of github.com:shreyasahasram08/nmma into…
shreyasahasram08 Mar 7, 2023
1b4fc20
sample masses in log10
shreyasahasram08 Mar 7, 2023
c680f46
Merge pull request #73 from shreyasahasram08/possis-update
mcoughlin Mar 7, 2023
e39e782
add updated tensorflow models
shreyasahasram08 Mar 7, 2023
c7fd293
Merge pull request #74 from shreyasahasram08/possis-update
mcoughlin Mar 7, 2023
5d8dab5
Check for missing filters in kilonova simulation
mcoughlin Mar 8, 2023
1ef08db
Ad-hoc fix for the kilonova filter in Kilonova+GRB model
tsunhopang Mar 8, 2023
73c6675
Add ZTF20abwysqy to example candidate_data
mcoughlin Mar 9, 2023
49cf1d5
Add missing grb-resolution argument to create_lightcurves.py
mcoughlin Mar 9, 2023
23eec29
Add missing jet-type argument
mcoughlin Mar 9, 2023
ff34512
Add WARNING statement when detection too bright for intervals
mcoughlin Mar 10, 2023
cf1db41
Raise error if light curve is empty
mcoughlin Mar 11, 2023
b258635
added 2nd filt condition to ztf sampling
tylerbarna Mar 12, 2023
1a901fb
Merge pull request #72 from tylerbarna/lc-ztf-sampling-filters
weizmannk Mar 12, 2023
99697ca
Using getFilteredMag in GenericCombineLCModel
tsunhopang Mar 12, 2023
0fac34d
Add CVs
mcoughlin Mar 22, 2023
216dae2
add LANL models
mcoughlin Mar 28, 2023
c1844c3
Use KNtheta, rather than KNTheta
mcoughlin Mar 28, 2023
20d52aa
Adding total ejecta mass calculation in BNSEjectaFitting
tsunhopang Apr 10, 2023
282e04c
Merge pull request #79 from mcoughlin/lanl
mcoughlin Apr 11, 2023
d25d547
update and edit
weizmannk Apr 17, 2023
7d8d3a8
add tuto to simulate lc detection
weizmannk Apr 18, 2023
4061243
Update nmma/em/detect_lightcurves.py
weizmannk Apr 18, 2023
49100cb
Update nmma/em/detect_lightcurves.py
weizmannk Apr 18, 2023
3f58eec
Update nmma/em/detect_lightcurves.py
weizmannk Apr 18, 2023
8719332
Update nmma/em/detect_lightcurves.py
weizmannk Apr 18, 2023
08ac6b4
Update nmma/em/detect_lightcurves.py
weizmannk Apr 18, 2023
5f1b2da
Update nmma/em/detect_lightcurves.py
weizmannk Apr 18, 2023
f0d9e4d
Update nmma/em/detect_lightcurves.py
weizmannk Apr 18, 2023
e7645d1
Update nmma/em/detect_lightcurves.py
weizmannk Apr 18, 2023
92a76f1
Update nmma/em/detect_lightcurves.py
weizmannk Apr 18, 2023
1cc317e
Update nmma/em/create_lightcurves.py
weizmannk Apr 19, 2023
27e5173
Update nmma/em/create_lightcurves.py
weizmannk Apr 19, 2023
1f412c7
update
weizmannk Apr 19, 2023
1577f88
update
weizmannk Apr 19, 2023
ef58d24
Merge pull request #80 from weizmannk/main
weizmannk Apr 19, 2023
5c6a723
Revise installation docs and add arm64 Mac specifics
bfhealy May 10, 2023
30bfeb0
Merge pull request #84 from bfhealy/install-notes
mcoughlin May 10, 2023
2b7e50b
Update wrapt_timeout_decorator import error message
bfhealy May 10, 2023
a42bd77
Merge pull request #85 from bfhealy/change-import-message
mcoughlin May 10, 2023
10887aa
Adding GW analysis in nmma (WIP)
tsunhopang May 11, 2023
461210c
Add more arm64 Mac installation troubleshooting
bfhealy May 11, 2023
722b02d
Merge pull request #86 from bfhealy/more-install-details
bfhealy May 11, 2023
8b275e7
Add ignore-bolometric flag
bfhealy May 12, 2023
6bbb724
Merge pull request #89 from bfhealy/nobol-flag
mcoughlin May 12, 2023
2b67c00
Add logo
mcoughlin May 13, 2023
32ab88f
bigger
mcoughlin May 13, 2023
9051602
Update installation.md
tylerbarna May 15, 2023
9bb7287
Merge pull request #90 from tylerbarna/main
mcoughlin May 15, 2023
61ed83d
removed zero division errors
May 22, 2023
8484fea
Merge pull request #92 from sahiljhawar/main
mcoughlin May 22, 2023
4e5ba15
Revert "added missing $ in Kappa"
May 23, 2023
e1601f2
Revert "missing $ in kappa"
May 23, 2023
9514e7d
added missing kappa
May 23, 2023
562fa48
Merge pull request #93 from sahiljhawar/changes
mcoughlin May 23, 2023
534ba5f
Rectified
May 23, 2023
6fb23bf
Merge pull request #94 from sahiljhawar/changes
mcoughlin May 23, 2023
04e28af
Major bilby, bilby-pipe, parallel-bilby version jump
May 26, 2023
1ac840e
Update requirements.txt
tsunhopang May 26, 2023
5ea97c8
Run workflow on pull requests
bfhealy May 26, 2023
e03536d
Fix typo
bfhealy May 26, 2023
04107ab
Add python 3.10 to test
bfhealy May 26, 2023
36cfd8b
Make python versions strings
bfhealy May 26, 2023
43f23c3
Branch update
bfhealy May 26, 2023
dc05e3e
Merge pull request #96 from bfhealy/workflow-updates
mcoughlin May 26, 2023
5970983
Adding the filters as input for nmma_analysis
May 29, 2023
7202421
Update argument for InjectionCreator
tsunhopang May 30, 2023
3979fd5
Adding functionality for sampling over Hubble constants
tsunhopang Jun 3, 2023
672e639
Adding --injection-model in light_curve_analysis
tsunhopang Jun 3, 2023
834378f
Bugfix for previous commit
tsunhopang Jun 3, 2023
4dacc9d
Adding functionality for sampling over Hubble constants for light_cur…
tsunhopang Jun 6, 2023
32bfa75
Fixing typos of 'Hubble_constants'
tsunhopang Jun 6, 2023
f949e39
Enabled training for Mattia's latest models
mcoughlin Jun 7, 2023
5383264
Make nmma analysis sncosmo-filter compatibile
mcoughlin Jun 10, 2023
7ecaa01
Add LANL file reader
mcoughlin Jun 13, 2023
17e629f
Bump NMMA to 0.0.9
mcoughlin Jun 13, 2023
5d118ac
Render description with markdown
mcoughlin Jun 13, 2023
5f6d4bb
Sort filters in list
mcoughlin Jun 13, 2023
6c344db
Expand scikit-learn requirements to be >= 1.0.2
mcoughlin Jun 14, 2023
87ad09a
Tag nmma 0.0.10
mcoughlin Jun 14, 2023
2041473
Add ligo.skymap to requirements list
mcoughlin Jun 14, 2023
4d6b52f
remove old Bu2019lm pkl, docs update
tylerbarna Jun 14, 2023
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
update and edit
weizmannk committed Apr 17, 2023
commit d25d547458da1f80f28a6c70c7f676fbc5db4775
456 changes: 238 additions & 218 deletions nmma/em/create_lightcurves.py
Original file line number Diff line number Diff line change
@@ -2,7 +2,6 @@
import numpy as np
import argparse
import json
from scipy.interpolate import interpolate as interp

from astropy import time

@@ -16,26 +15,36 @@
KilonovaGRBLightCurveModel,
)
from .injection import create_light_curve_data
from .utils import NumpyEncoder, check_default_attr


def main():

parser = argparse.ArgumentParser(
description="Inference on kilonova ejecta parameters."
)
parser.add_argument(
"--model", type=str, required=True, help="Name of the kilonova model to be used"
"--model",
type=str,
required=True,
help="Name of the kilonova model to be used"
)
parser.add_argument(
"--svd-path",
type=str,
default="svdmodels",
help="Path to the SVD directory, with {model}_mag.pkl and {model}_lbol.pkl",
)
parser.add_argument(
"--outdir", type=str, required=True, help="Path to the output directory"
"--outdir",
type=str,
required=True,
help="Path to the output directory"
)
parser.add_argument(
"--label",
type=str,
required=True,
help="Label for the run"
)
parser.add_argument("--label", type=str, required=True, help="Label for the run")
parser.add_argument(
"--tmin",
type=float,
@@ -49,7 +58,10 @@ def main():
help="Days to be stoped analysing from the trigger time (default: 14)",
)
parser.add_argument(
"--dt", type=float, default=0.1, help="Time step in day (default: 0.1)"
"--dt",
type=float,
default=0.1,
help="Time step in day (default: 0.1)"
)
parser.add_argument(
"--svd-mag-ncoeff",
@@ -69,18 +81,6 @@ def main():
help="A comma seperated list of filters to use (e.g. g,r,i). If none is provided, will use all the filters available",
default="u,g,r,i,z,y,J,H,K",
)
parser.add_argument(
"--grb-resolution",
type=float,
default=5,
help="The upper bound on the ratio between thetaWing and thetaCore (default: 5)",
)
parser.add_argument(
"--jet-type",
type=int,
default=0,
help="Jet type to used used for GRB afterglow light curve (default: 0)",
)
parser.add_argument(
"--generation-seed",
metavar="seed",
@@ -89,7 +89,10 @@ def main():
help="Injection generation seed (default: 42)",
)
parser.add_argument(
"--injection", metavar="PATH", type=str, help="Path to the injection json file"
"--injection",
metavar="PATH",
type=str,
help="Path to the injection json file"
)
parser.add_argument(
"--joint-light-curve",
@@ -102,7 +105,10 @@ def main():
action="store_true",
)
parser.add_argument(
"--plot", action="store_true", default=False, help="add best fit plot"
"--plot",
action="store_true",
default=False,
help="add best fit plot"
)
parser.add_argument(
"--verbose",
@@ -124,10 +130,15 @@ def main():
default="sklearn_gp",
)
parser.add_argument(
"--absolute", action="store_true", default=False, help="Absolute Magnitude"
"--absolute",
action="store_true",
default=False,
help="Absolute Magnitude"
)
parser.add_argument(
"--ztf-sampling", help="Use realistic ZTF sampling", action="store_true"
"--ztf-sampling",
help="Use realistic ZTF sampling",
action="store_true"
)
parser.add_argument(
"--ztf-uncertainties",
@@ -189,212 +200,221 @@ def main():
seed = args.generation_seed
np.random.seed(seed)

bilby.core.utils.setup_logger(outdir=args.outdir, label=args.label)
bilby.core.utils.check_directory_exists_and_if_not_mkdir(args.outdir)
if args.ztf_sampling or args.ztf_ToO or args.rubin_ToO:

print('\n===================================================================')
print('Sorry we could not use ZTF or flags to generate those statistics')
print('===================================================================')
print('Please remove all flags rely on with ZTF or Rubin then retry again')
print('===================================================================\n')

else:
bilby.core.utils.setup_logger(outdir=args.outdir, label=args.label)
bilby.core.utils.check_directory_exists_and_if_not_mkdir(args.outdir)
# initialize light curve model
sample_times = np.arange(args.tmin, args.tmax + args.dt, args.dt)

# initialize light curve model
sample_times = np.arange(args.tmin, args.tmax + args.dt, args.dt)
if args.joint_light_curve:

if args.joint_light_curve:
assert args.model != "TrPi2018", "TrPi2018 is not a kilonova / supernova model"

assert args.model != "TrPi2018", "TrPi2018 is not a kilonova / supernova model"
if args.model != "nugent-hyper" or args.model != "salt2":

if args.model != "nugent-hyper" or args.model != "salt2":
kilonova_kwargs = dict(
model=args.model,
svd_path=args.svd_path,
mag_ncoeff=args.svd_mag_ncoeff,
lbol_ncoeff=args.svd_lbol_ncoeff,
interpolation_type=args.interpolation_type,
parameter_conversion=None,
)

kilonova_kwargs = dict(
model=args.model,
svd_path=args.svd_path,
mag_ncoeff=args.svd_mag_ncoeff,
lbol_ncoeff=args.svd_lbol_ncoeff,
interpolation_type=args.interpolation_type,
parameter_conversion=None,
)
light_curve_model = KilonovaGRBLightCurveModel(
sample_times=sample_times,
kilonova_kwargs=kilonova_kwargs,
GRB_resolution=args.grb_resolution,
jetType=args.jet_type,
)

light_curve_model = KilonovaGRBLightCurveModel(
sample_times=sample_times,
kilonova_kwargs=kilonova_kwargs,
GRB_resolution=args.grb_resolution,
jetType=args.jet_type,
)
else:

else:
light_curve_model = SupernovaGRBLightCurveModel(
sample_times=sample_times,
GRB_resolution=args.grb_resolution,
SNmodel=args.model,
jetType=args.jet_type,
)

light_curve_model = SupernovaGRBLightCurveModel(
sample_times=sample_times,
GRB_resolution=args.grb_resolution,
SNmodel=args.model,
jetType=args.jet_type,
)
else:
if args.model == "TrPi2018":
light_curve_model = GRBLightCurveModel(
sample_times=sample_times,
resolution=args.grb_resolution,
jetType=args.jet_type,
)
elif args.model == "nugent-hyper" or args.model == "salt2":
light_curve_model = SupernovaLightCurveModel(
sample_times=sample_times, model=args.model
)

else:
if args.model == "TrPi2018":
light_curve_model = GRBLightCurveModel(
sample_times=sample_times,
resolution=args.grb_resolution,
jetType=args.jet_type,
)
elif args.model == "nugent-hyper" or args.model == "salt2":
light_curve_model = SupernovaLightCurveModel(
sample_times=sample_times, model=args.model
else:
light_curve_kwargs = dict(
model=args.model,
sample_times=sample_times,
svd_path=args.svd_path,
mag_ncoeff=args.svd_mag_ncoeff,
lbol_ncoeff=args.svd_lbol_ncoeff,
interpolation_type=args.interpolation_type,
)
light_curve_model = SVDLightCurveModel(**light_curve_kwargs)

## read injection file
with open(args.injection, "r") as f:
injection_dict = json.load(f, object_hook=bilby.core.utils.decode_bilby_json)

args.kilonova_tmin = args.tmin
args.kilonova_tmax = args.tmax
args.kilonova_tstep = args.dt

args.kilonova_injection_model = args.model
args.kilonova_injection_svd = args.svd_path
args.injection_svd_mag_ncoeff = args.svd_mag_ncoeff
args.injection_svd_lbol_ncoeff = args.svd_lbol_ncoeff

# args.injection_detection_limit = np.inf
args.kilonova_error = 0

injection_df = injection_dict["injections"]

# save simulation_id from observing scenarios data
# we save lighcurve for each event with its initial simulation ID
# from observing scenarios
simulation_id = injection_df['simulation_id']

mag_ds = {}
for index, row in injection_df.iterrows():

injection_outfile = os.path.join(args.outdir, "%d.dat" % simulation_id[index])
if os.path.isfile(injection_outfile):
mag_ds[index] = np.loadtxt(injection_outfile)
continue

injection_parameters = row.to_dict()

try:
tc_gps = time.Time(injection_parameters["geocent_time_x"], format="gps")
except KeyError:
tc_gps = time.Time(injection_parameters["geocent_time"], format="gps")
trigger_time = tc_gps.mjd

injection_parameters["kilonova_trigger_time"] = trigger_time

data = create_light_curve_data(
injection_parameters,
args,
doAbsolute=args.absolute,
light_curve_model=light_curve_model,
)

else:
light_curve_kwargs = dict(
model=args.model,
sample_times=sample_times,
svd_path=args.svd_path,
mag_ncoeff=args.svd_mag_ncoeff,
lbol_ncoeff=args.svd_lbol_ncoeff,
interpolation_type=args.interpolation_type,
print("Injection generated")

fid = open(injection_outfile, "w")
fid.write("# t[days] ")
fid.write(str(" ".join(args.filters.split(","))))
fid.write("\n")
for ii, tt in enumerate(sample_times):
fid.write("%.5f " % sample_times[ii])
for filt in data.keys():
if args.filters:
if filt not in args.filters.split(","):
continue
fid.write("%.3f " % data[filt][ii, 1])
fid.write("\n")
fid.close()

mag_ds[index] = np.loadtxt(injection_outfile)

if args.plot:
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use("agg")
params = {
"backend": "pdf",
"axes.labelsize": 42,
"legend.fontsize": 42,
"xtick.labelsize": 42,
"ytick.labelsize": 42,
"text.usetex": True,
"font.family": "Times New Roman",
"figure.figsize": [16, 20],
}
matplotlib.rcParams.update(params)

plotName = os.path.join(
args.outdir, "injection_" + args.model + "_lightcurves.pdf"
)
light_curve_model = SVDLightCurveModel(**light_curve_kwargs)

with open(args.injection, "r") as f:
injection_dict = json.load(f, object_hook=bilby.core.utils.decode_bilby_json)

args.kilonova_tmin = args.tmin
args.kilonova_tmax = args.tmax
args.kilonova_tstep = args.dt

args.kilonova_injection_model = args.model
args.kilonova_injection_svd = args.svd_path
args.injection_svd_mag_ncoeff = args.svd_mag_ncoeff
args.injection_svd_lbol_ncoeff = args.svd_lbol_ncoeff

# args.injection_detection_limit = np.inf
args.kilonova_error = 0

injection_df = injection_dict["injections"]
mag_ds = {}
for index, row in injection_df.iterrows():

injection_outfile = os.path.join(args.outdir, "%d.dat" % index)
if os.path.isfile(injection_outfile):
with open(injection_outfile, "r") as outfile:
mag_ds[index] = json.loads(outfile.read())
continue

injection_parameters = row.to_dict()

try:
tc_gps = time.Time(injection_parameters["geocent_time_x"], format="gps")
except KeyError:
tc_gps = time.Time(injection_parameters["geocent_time"], format="gps")
trigger_time = tc_gps.mjd

injection_parameters["kilonova_trigger_time"] = trigger_time

data = create_light_curve_data(
injection_parameters,
args,
doAbsolute=args.absolute,
light_curve_model=light_curve_model,
)
print("Injection generated")

with open(injection_outfile, "w") as outfile:
json.dump(data, outfile, cls=NumpyEncoder)

mag_ds[index] = data

if args.plot:
import matplotlib.pyplot as plt
import matplotlib

params = {
"backend": "pdf",
"axes.labelsize": 30,
"legend.fontsize": 30,
"xtick.labelsize": 24,
"ytick.labelsize": 24,
"text.usetex": True,
"font.family": "Times New Roman",
"figure.figsize": [16, 20],
}
matplotlib.rcParams.update(params)

ztf_sampling = check_default_attr(args, "ztf_sampling")
ztf_ToO = check_default_attr(args, "ztf_ToO")
rubin_ToO = check_default_attr(args, "rubin_ToO")
photometry_augmentation = check_default_attr(
args, "photometry_augmentation", default=None
)

plotName = os.path.join(
args.outdir, "injection_" + args.model + "_lightcurves.pdf"
)
fig = plt.figure(figsize=(16, 18))

filts = args.filters.split(",")
ncols = 1
nrows = int(np.ceil(len(filts) / ncols))
gs = fig.add_gridspec(nrows=nrows, ncols=ncols, wspace=0.6, hspace=0.5)

for ii, filt in enumerate(filts):
loc_x, loc_y = np.divmod(ii, nrows)
loc_x, loc_y = int(loc_x), int(loc_y)
ax = fig.add_subplot(gs[loc_y, loc_x])

data_out = []
for jj, key in enumerate(list(mag_ds.keys())):
data_set = np.array(mag_ds[key][filt])
if ztf_sampling or ztf_ToO or rubin_ToO or photometry_augmentation:
f = interp.interp1d(
data_set[:, 0], data_set[:, 1], fill_value="extrapolate"
)
data_out.append(f(sample_times))

fig = plt.figure()

filts = args.filters.split(",")
#filts = "u,g,r,i,z,y,J,H,K".split(",")
ncols = 1
nrows = int(np.ceil(len(filts) / ncols))
gs = fig.add_gridspec(nrows=nrows, ncols=ncols, wspace=0.6, hspace=0.5)

for ii, filt in enumerate(filts):
loc_x, loc_y = np.divmod(ii, nrows)
loc_x, loc_y = int(loc_x), int(loc_y)
ax = fig.add_subplot(gs[loc_y, loc_x])

data_out = []
for jj, key in enumerate(list(mag_ds.keys())):
data_out.append(mag_ds[key][:, ii + 1])
data_out = np.vstack(data_out)

bins = np.linspace(-20, 1, 50)

def return_hist(x):
hist, bin_edges = np.histogram(x, bins=bins)
return hist

hist = np.apply_along_axis(lambda x: return_hist(x), -1, data_out.T)
bins = (bins[1:] + bins[:-1]) / 2.0

X, Y = np.meshgrid(sample_times, bins)
hist = hist.astype(np.float64)
hist[hist == 0.0] = np.nan

c= ax.pcolormesh(X, Y, hist.T, shading="auto", cmap="cividis", alpha=0.7)

# plot 10th, 50th, 90th percentiles
ax.plot(sample_times, np.nanpercentile(data_out, 50, axis=0), "k--")
ax.plot(sample_times, np.nanpercentile(data_out, 90, axis=0), "k--")
ax.plot(sample_times, np.nanpercentile(data_out, 10, axis=0), "k--")

ax.set_xlim([0, 14])
ax.set_ylim([-12, -18])
ax.set_ylabel(filt, fontsize=30, rotation=0, labelpad=14)

if ii == len(filts) - 1:
ax.set_xticks([0, 2, 4, 6, 8, 10, 12, 14])
else:
data_out.append(data_set[:, 1])
data_out = np.vstack(data_out)

bins = np.linspace(-20, 1, 50)

def return_hist(x):
hist, bin_edges = np.histogram(x, bins=bins)
return hist

hist = np.apply_along_axis(lambda x: return_hist(x), -1, data_out.T)
bins = (bins[1:] + bins[:-1]) / 2.0

X, Y = np.meshgrid(sample_times, bins)
hist = hist.astype(np.float64)
hist[hist == 0.0] = np.nan

ax.pcolormesh(X, Y, hist.T, shading="auto", cmap="viridis", alpha=0.7)

# plot 10th, 50th, 90th percentiles
ax.plot(
sample_times,
np.nanpercentile(data_out, 50, axis=0),
c="k",
linestyle="--",
plt.setp(ax.get_xticklabels(), visible=False)
ax.set_yticks([-18, -16, -14, -12])
ax.tick_params(axis="x", labelsize=42)
ax.tick_params(axis="y", labelsize=42)
ax.grid(which="both", alpha=0.5)

fig.colorbar(c, ax = ax)
fig.text(0.4, 0.05, r"Time [days]", fontsize=42)
fig.text(
0.01,
0.5,
r"Absolute Magnitude",
va="center",
rotation="vertical",
fontsize=42,
)
ax.plot(sample_times, np.nanpercentile(data_out, 90, axis=0), "k--")
ax.plot(sample_times, np.nanpercentile(data_out, 10, axis=0), "k--")

ax.set_xlim([0, 14])
ax.set_ylim([-12, -18])
ax.set_ylabel(filt, fontsize=30, rotation=0, labelpad=14)

if ii == len(filts) - 1:
ax.set_xticks([0, 2, 4, 6, 8, 10, 12, 14])
else:
plt.setp(ax.get_xticklabels(), visible=False)
ax.set_yticks([-18, -16, -14, -12])
ax.tick_params(axis="x", labelsize=30)
ax.tick_params(axis="y", labelsize=30)
ax.grid(which="both", alpha=0.5)

fig.text(0.45, 0.05, "Time [days]", fontsize=30)
fig.text(
0.01,
0.5,
"Absolute Magnitude",
va="center",
rotation="vertical",
fontsize=30,
)

# plt.tight_layout()
plt.savefig(plotName, bbox_inches="tight")
plt.close()
#plt.tight_layout()
plt.savefig(plotName, bbox_inches="tight")
plt.close()
75 changes: 49 additions & 26 deletions nmma/em/detect_lightcurves.py
Original file line number Diff line number Diff line change
@@ -10,7 +10,7 @@
from matplotlib.lines import Line2D
from matplotlib import gridspec

font = {"size": 30}
font = {"size": 32}
matplotlib.rc("font", **font)


@@ -56,21 +56,21 @@ def main():
type=str
)
parser.add_argument(
"--binary-type",
"--binary-type",
type=str,
required=True,
help="Either BNS or NSBH"
)
parser.add_argument(
"-c",
"--configDirectory",
"--configDirectory",
help="gwemopt config file directory.",
required=True
)
parser.add_argument(
"--outdir",
type=str,
required=True,
default="outdir",
help="Path to the output directory"
)
parser.add_argument(
@@ -115,6 +115,7 @@ def main():
type=int,
required=True
)

parser.add_argument(
"--parallel",
action="store_true",
@@ -126,15 +127,16 @@ def main():
type=int,
default=1,
help="Number of cores"
)
)

args = parser.parse_args()

# load the injection json file
if args.injection_file:
if args.injection_file.endswith(".json"):
with open(args.injection_file, "rb") as f:
injection_data = json.load(f)
datadict = injection_data["injections"]["content"]
datadict = injection_data["injections"]["content"]
dataframe_from_inj = pd.DataFrame.from_dict(datadict)

# get the injection index from the oserving scenarios simulations
@@ -148,19 +150,33 @@ def main():

#indices = np.loadtxt(args.indices_file)
indices = simulation_id

commands = []
lcs = {}
for index, row in dataframe_from_inj.iterrows():
outdir = os.path.join(args.outdir, str(index))
#outdir = os.path.join('./obs_paper/detection_lc/outdir_BNS', str(index))
if not os.path.isdir(outdir):
os.makedirs(outdir)

skymap_file = os.path.join(args.skymap_dir, "%d.fits" % indices[index])
lc_file = os.path.join(args.lightcurve_dir, "%d.dat" % indices[index])

#skymap_file = os.path.join('~/OBSERVING_SCENARIOS/runs/O4/farah/allsky', "%d.fits" % indices[index])
#lc_file = os.path.join('./obs_paper/absolute_mag_lc/outdir_BNS', "%d.dat" % indices[index])

# fixed scheduling time as observation plan
#number_shot = int(1 + (args.tmax - args.tmin)/args.dt)

#lcs[index] = np.loadtxt(lc_file)[0:number_shot,]

lcs[index] = np.loadtxt(lc_file)

print(lcs)


efffile = os.path.join(outdir, f"efficiency_true_{indices[index]}.txt")
print(efffile)
if os.path.isfile(efffile):
continue

@@ -195,19 +211,24 @@ def main():

absmag, effs, probs = [], [], []
fid = open(args.detections_file, "w")
#fid = open('lc_skymap_detection', "w")
for index, row in dataframe_from_inj.iterrows():
outdir = os.path.join(args.outdir, str(index))
#outdir = os.path.join('./obs_paper/detection_lc/outdir_BNS', str(index))

efffile = os.path.join(outdir, f"efficiency_true_{indices[index]}.txt")
#print(efffile)

## Choose band for the best proxy
# for ZTF r-band give the best proxy
if args.telescope == 'ZTF':
absmag.append(np.min(lcs[index][:, 3]))
# For Rubin i-band or z-band are best but here we choose r-band,
# that give the same results
# For Rubin i-band or z-band are best
else:
absmag.append(np.min(lcs[index][:, 4]))

print(absmag)

if not os.path.isfile(efffile):
fid.write("0\n")
effs.append(0.0)
@@ -248,6 +269,8 @@ def main():
probs_det = probs[idx]
probs_miss = probs[idy]

print( dataframe_from_detected["mass_1"], " :",dataframe_from_detected["mass_2"] )
print( dataframe_from_missed)
(mchirp_det, eta_det, q_det) = ms2mc(
dataframe_from_detected["mass_1"],
dataframe_from_detected["mass_2"],
@@ -285,9 +308,9 @@ def main():
label="Missed",
)
if args.binary_type == "BNS":
plt.xlim([-17.5, -14.0])
plt.xlim([-17.5, -14.5])
elif args.binary_type == "NSBH":
plt.xlim([-16.5, -13.0])
plt.xlim([-16.5, -13.5])
plt.gca().invert_xaxis()
plt.xlabel("Absolute Magnitude")
plt.ylabel("Distance [Mpc]")
@@ -298,7 +321,7 @@ def main():
plt.savefig(plotName)
plt.close()

fig = plt.figure(figsize=(20, 16))
fig = plt.figure(figsize=(22, 16))

gs = gridspec.GridSpec(4, 4)
ax1 = fig.add_subplot(gs[1:4, 0:3])
@@ -311,7 +334,7 @@ def main():
plt.scatter(
absmag_det,
1 - probs_det,
s=150 * np.ones(absmag_det.shape),
s=600 * np.ones(absmag_det.shape),
cmap=cmap,
norm=norm,
marker="*",
@@ -321,7 +344,7 @@ def main():
plt.scatter(
absmag_miss,
1 - probs_miss,
s=150 * np.ones(absmag_miss.shape),
s=600 * np.ones(absmag_miss.shape),
cmap=cmap,
norm=norm,
marker="o",
@@ -335,7 +358,7 @@ def main():
marker="o",
color="w",
label="Missed",
markersize=20,
markersize=30,
markerfacecolor="k",
),
Line2D(
@@ -344,14 +367,14 @@ def main():
marker="*",
color="w",
label="Found",
markersize=20,
markersize=30,
markerfacecolor="k",
),
]
if args.binary_type == "BNS":
plt.xlim([-17.5, -14.0])
plt.xlim([-17.5, -14.5])
elif args.binary_type == "NSBH":
plt.xlim([-16.5, -13.0])
plt.xlim([-16.5, -13.5])
plt.ylim([0.001, 1.0])
ax1.set_yscale("log")
plt.gca().invert_xaxis()
@@ -401,9 +424,9 @@ def main():

plt.axes(ax2)
if args.binary_type == "BNS":
xedges = np.linspace(-17.5, -14.0, 30)
xedges = np.linspace(-17.5, -14.5, 30)
elif args.binary_type == "NSBH":
xedges = np.linspace(-16.5, -13.0, 30)
xedges = np.linspace(-16.5, -13.5, 30)

hist, bin_edges = np.histogram(absmag_miss, bins=xedges, density=False)
bins = (bin_edges[1:] + bin_edges[:-1]) / 2.0
@@ -430,15 +453,15 @@ def main():
plt.legend()
plt.ylabel("Counts")
if args.binary_type == "BNS":
plt.xlim([-17.5, -14.0])
plt.xlim([-17.5, -14.5])
elif args.binary_type == "NSBH":
plt.xlim([-16.5, -13.0])
plt.xlim([-16.5, -13.5])
# plt.xlim([0.02, 50])
# ax2.set_xscale('log')
plt.gca().invert_xaxis()
ax2.set_yscale("log")
ax2.set_xticklabels([])

plotName = os.path.join(plotdir, "eff.pdf")
plt.savefig(plotName, bbox_inches="tight")
plt.close()
plotName = os.path.join(plotdir, f"eff_{args.binary_type}_{args.telescope}.pdf")
plt.savefig(plotName,bbox_inches='tight', dpi=2500)
plt.close()