Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
nupurkmr9 authored Dec 25, 2021
1 parent f95791f commit d2558db
Showing 1 changed file with 8 additions and 4 deletions.
12 changes: 8 additions & 4 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -137,7 +137,7 @@ mkdir datasets
python dataset_tool.py --source ../lsun/church_outdoor_train_lmdb/ --dest datasets/church1k.zip --max-images 1000 --transform=center-crop --width=256 --height=256
```

datasets can be downloaded from their repsective websites:
All other datasets can be downloaded from their repsective websites:

[FFHQ](https://github.com/NVlabs/ffhq-dataset), [LSUN Categories](http://dl.yf.io/lsun/objects/), [AFHQ](https://github.com/clovaai/stargan-v2), [AnimalFace Dog](https://data-efficient-gans.mit.edu/datasets/AnimalFace-dog.zip), [AnimalFace Cat](https://data-efficient-gans.mit.edu/datasets/AnimalFace-cat.zip), [100-shot Bridge-of-Sighs](https://data-efficient-gans.mit.edu/datasets/100-shot-bridge_of_sighs.zip)

Expand All @@ -146,14 +146,18 @@ datasets can be downloaded from their repsective websites:

**Example command for Vision-aided GAN training with multiple pretrained networks**:
```.bash
python scripts/vision-aided-gan.py --cmd "python train.py --outdir models/ --data datasets/AnimalFace-dog.zip --gpus 2 --metrics fid50k_full --cfg paper256_2fmap --batch 16 --mirror 1 --aug ada --augpipe bgc --snap 25" --cv-args "--augcv ada --ada-target-cv 0.3 --augpipecv bgc" --kimgs-list '1000,1000,1000' --num 3
python scripts/vision-aided-gan.py --cmd "python train.py --outdir models/ --data datasets/AnimalFace-dog.zip \
--gpus 2 --metrics fid50k_full --cfg paper256_2fmap --batch 16 --mirror 1 --aug ada --augpipe bgc --snap 25" \
--cv-args "--augcv ada --ada-target-cv 0.3 --augpipecv bgc" --kimgs-list '1000,1000,1000' --num 3
```
We autoamtically select the best model out of the set of pretrained models for training. If fine-tuning a baseline trained model add `--resume <stylegan2-baseline.pkl>` in `--cmd` arg. `--kimgs-list` controls the number of iterations after which next model is added. It is a comma separated list of iteration numbers. For dataset with training samples 1k, we initialize `--kimgs-list` to '4000,1000,1000', and for training samples >1k `--kimgs-list` is '8000,2000,2000'.
We autoamtically select the best model out of the set of pretrained models for training. If fine-tuning a baseline trained model include `--resume <stylegan2-baseline.pkl>` in `--cmd` argument. `--kimgs-list` controls the number of iterations after which next model is added. It is a comma separated list of iteration numbers. For dataset with training samples 1k, we initialize `--kimgs-list` to '4000,1000,1000', and for training samples >1k `--kimgs-list` is '8000,2000,2000'.

**Vision-aided Gan training with a specific pretrained network without model selection**

```.bash
python train.py --outdir models/ --data datasets/AnimalFace-dog.zip --gpus 2 --metrics fid50k_full --kimg 25000 --cfg paper256_2fmap --cv input-dino-output-conv_multi_level --cv-loss multilevel_s --augcv ada --ada-target-cv 0.3 --augpipecv bgc --batch 16 --mirror 1 --aug ada --augpipe bgc --snap 25 --warmup 1
python train.py --outdir models/ --data datasets/AnimalFace-dog.zip --gpus 2 --metrics fid50k_full --kimg 25000 \
--cfg paper256_2fmap --cv input-dino-output-conv_multi_level --cv-loss multilevel_s --augcv ada \
--ada-target-cv 0.3 --augpipecv bgc --batch 16 --mirror 1 --aug ada --augpipe bgc --snap 25 --warmup 1
```

**model selection**: returns the computer vision model with highest linear probe accuracy for the best FID model in a folder or the given network file.
Expand Down

0 comments on commit d2558db

Please sign in to comment.