Skip to content

nvidia-riva/nemo2riva

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

License

Nemo2Riva

NVIDIA NeMo is a conversational AI toolkit built for researchers working on automatic speech recognition (ASR), natural language processing (NLP), and text-to-speech synthesis (TTS). NVIDIA Riva is a GPU-accelerated SDK for building Speech AI applications that are customized for your use case and deliver real-time performance. While TAO Toolkit is the recommended path for typical users of Riva, some developers may prefer to use NeMo because it exposes more of the model and PyTorch internals. Riva supports the ability to import models trained in NeMo.

This repo provides Nemo2Riva: command-line tool to export trained NeMo models saved in .nemo format, to Riva input format (.riva) to be deployed in Riva.

Export NeMo Models to Riva with NeMo2Riva

Models trained in NVIDIA NeMo have the format .nemo. To use these models in Riva, convert the model checkpoints to .riva format for building and deploying with Riva ServiceMaker using the nemo2riva tool. The nemo2riva tool is currently packaged and available via the Riva Quick Start scripts.

  1. Follow the NeMo installation instructions to set up a NeMo environment; version 1.10.0 or greater. From within your NeMo environment, run:

    pip3 install nvidia-pyindex
    pip3 install nemo2riva
    nemo2riva --out /NeMo/<MODEL_NAME>.riva /NeMo/<MODEL_NAME>.nemo

For additional information and usage, run:

 nemo2riva --help
Usage:

```
nemo2riva [-h] [--out OUT] [--validate] [--schema SCHEMA] [--format FORMAT] [--verbose VERBOSE] [--key KEY] source

When converting NeMo models to Riva `.eff` input format, passing the input `.nemo` as a parameter creates `.riva`.

If no `--format` is passed, the Riva-preferred format for the supplied model architecture is selected automatically.

The format is also derived from schema if the `--schema` argument is supplied, or if `nemo2riva` is able to find the schema for this NeMo model
among known models - there is a set of YAML files in the `nemo2riva/validation_schemas` directory, or you can add your own.

If the `--key` argument is passed, the model graph in the output EFF file is encrypted with that key.

positional arguments:

: source             Source .nemo file

optional arguments:

: -h

    --help

    Show this help message and exit

    --out

    OUT

    Location to write resulting Riva EFF input to (default: `None`)

    --validate

    Validate using schemas (default: `False`)

    --schema

    SCHEMA

    Schema file to use for validation (default: `None`)

    --format

    FORMAT

    Force specific export format: `ONNX|TS|CKPT|NEMO` (default: `None`)

    --verbose

    VERBOSE

    Verbose level for logging, numeric (default: `None`)

    --key

    KEY

    Encryption key or file (default: `None`)
```

Supported Models

Modality Architecture nemo2riva command
Automatic Speech Recognition Parakeet-CTC nemo2riva --key tlt_encode --out <path to save .riva model> --onnx-opset 18 <path to .nemo model>
Conformer-CTC
Parakeet-TDT nemo2riva --key tlt_encode --out <path to save .riva model> --format nemo <path to .nemo model>
Parakeet-RNNT
Conformer-RNNT
Canary
Note: Extract CTC/RNNT head from Hybrid ASR using this script before running nemo2riva
Text to Speech HiFiGAN nemo2riva --key tlt_encode --out <path to save .riva model> <path to .nemo model>
RadTTS
Fastpitch nemo2riva --key tlt_encode --out <path to save .riva model> --onnx-opset 14 <path to .nemo model>
Voice Activity Detection Segment VAD nemo2riva --key tlt_encode --out <path to save .riva model> --onnx-opset 18 <path to .nemo model>
FrameVAD
Punctuation and Capitalization Bert-Base nemo2riva --key tlt_encode --out <path to save .riva model> --onnx-opset 18 <path to .nemo model>
Bert-Large
Neural Machine Translation Megatron nemo2riva --key tlt_encode --max-dim 1024 --out <path to save .riva model> <path to .nemo model>