forked from jorgecasas/php-ml
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
141 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
<?php | ||
|
||
declare(strict_types=1); | ||
|
||
namespace Phpml\Preprocessing; | ||
|
||
use Phpml\Exception\InvalidArgumentException; | ||
|
||
final class OneHotEncoder implements Preprocessor | ||
{ | ||
/** | ||
* @var bool | ||
*/ | ||
private $ignoreUnknown; | ||
|
||
/** | ||
* @var array | ||
*/ | ||
private $categories = []; | ||
|
||
public function __construct(bool $ignoreUnknown = false) | ||
{ | ||
$this->ignoreUnknown = $ignoreUnknown; | ||
} | ||
|
||
public function fit(array $samples, ?array $targets = null): void | ||
{ | ||
foreach (array_keys(array_values(current($samples))) as $column) { | ||
$this->fitColumn($column, array_values(array_unique(array_column($samples, $column)))); | ||
} | ||
} | ||
|
||
public function transform(array &$samples, ?array &$targets = null): void | ||
{ | ||
foreach ($samples as &$sample) { | ||
$sample = $this->transformSample(array_values($sample)); | ||
} | ||
} | ||
|
||
private function fitColumn(int $column, array $values): void | ||
{ | ||
$count = count($values); | ||
foreach ($values as $index => $value) { | ||
$map = array_fill(0, $count, 0); | ||
$map[$index] = 1; | ||
$this->categories[$column][$value] = $map; | ||
} | ||
} | ||
|
||
private function transformSample(array $sample): array | ||
{ | ||
$encoded = []; | ||
foreach ($sample as $column => $feature) { | ||
if (!isset($this->categories[$column][$feature]) && !$this->ignoreUnknown) { | ||
throw new InvalidArgumentException(sprintf('Missing category "%s" for column %s in trained encoder', $feature, $column)); | ||
} | ||
|
||
$encoded = array_merge( | ||
$encoded, | ||
$this->categories[$column][$feature] ?? array_fill(0, count($this->categories[$column]), 0) | ||
); | ||
} | ||
|
||
return $encoded; | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
<?php | ||
|
||
declare(strict_types=1); | ||
|
||
namespace Phpml\Tests\Preprocessing; | ||
|
||
use Phpml\Exception\InvalidArgumentException; | ||
use Phpml\Preprocessing\OneHotEncoder; | ||
use PHPUnit\Framework\TestCase; | ||
|
||
final class OneHotEncoderTest extends TestCase | ||
{ | ||
public function testOneHotEncodingWithoutIgnoreUnknown(): void | ||
{ | ||
$samples = [ | ||
['fish', 'New York', 'regression'], | ||
['dog', 'New York', 'regression'], | ||
['fish', 'Vancouver', 'classification'], | ||
['dog', 'Vancouver', 'regression'], | ||
]; | ||
|
||
$encoder = new OneHotEncoder(); | ||
$encoder->fit($samples); | ||
$encoder->transform($samples); | ||
|
||
self::assertEquals([ | ||
[1, 0, 1, 0, 1, 0], | ||
[0, 1, 1, 0, 1, 0], | ||
[1, 0, 0, 1, 0, 1], | ||
[0, 1, 0, 1, 1, 0], | ||
], $samples); | ||
} | ||
|
||
public function testThrowExceptionWhenUnknownCategory(): void | ||
{ | ||
$encoder = new OneHotEncoder(); | ||
$encoder->fit([ | ||
['fish', 'New York', 'regression'], | ||
['dog', 'New York', 'regression'], | ||
['fish', 'Vancouver', 'classification'], | ||
['dog', 'Vancouver', 'regression'], | ||
]); | ||
$samples = [['fish', 'New York', 'ka boom']]; | ||
|
||
$this->expectException(InvalidArgumentException::class); | ||
|
||
$encoder->transform($samples); | ||
} | ||
|
||
public function testIgnoreMissingCategory(): void | ||
{ | ||
$encoder = new OneHotEncoder(true); | ||
$encoder->fit([ | ||
['fish', 'New York', 'regression'], | ||
['dog', 'New York', 'regression'], | ||
['fish', 'Vancouver', 'classification'], | ||
['dog', 'Vancouver', 'regression'], | ||
]); | ||
$samples = [['ka', 'boom', 'riko']]; | ||
$encoder->transform($samples); | ||
|
||
self::assertEquals([ | ||
[0, 0, 0, 0, 0, 0], | ||
], $samples); | ||
} | ||
} |