Skip to content

Commit

Permalink
Merge remote-tracking branch 'turboderp/master'
Browse files Browse the repository at this point in the history
  • Loading branch information
oobabooga committed Jun 24, 2024
2 parents 5fdb899 + 6a8172c commit 921d4a2
Show file tree
Hide file tree
Showing 46 changed files with 1,002 additions and 484 deletions.
314 changes: 1 addition & 313 deletions convert.py
Original file line number Diff line number Diff line change
@@ -1,313 +1 @@
from exllamav2 import ExLlamaV2, ExLlamaV2Config, ExLlamaV2Tokenizer
from exllamav2.architecture import RopeStyle
import argparse, os, shutil
import sys
import json
from conversion.tokenize import tokenize
from conversion.measure import embeddings, measure_quant
from conversion.quantize import quant
from conversion.optimize import optimize
from conversion.compile import compile_model
from conversion.qparams import qparams_headoptions
import torch

parser = argparse.ArgumentParser(description = "Convert model to ExLlamaV2")
parser.add_argument("-i", "--in_dir", type = str, help = "Input directory", default = "")
parser.add_argument("-o", "--out_dir", type = str, help = "Output (working) directory")
parser.add_argument("-res", "--resume", action = "store_true", help = "Resume job from specified output directory (without specifying other options)")
parser.add_argument("-nr", "--no_resume", action = "store_true", help = "Do not resume an interrupted job (deletes all files in the output directory)")
parser.add_argument("-cf", "--compile_full", type = str, help = "Output folder for compiled model with all config/tokenizer files")
parser.add_argument("-c", "--cal_dataset", type = str, help = "Calibration dataset (.parquet file)")
parser.add_argument("-b", "--bits", type = float, default = 4.125, help = "Target bits per weight")
parser.add_argument("-ss", "--shard_size", type = float, help = "Max shard size in MB (default: 8192)", default = 8192)
parser.add_argument("-rs", "--rope_scale", type = float, help = "RoPE scaling factor")
parser.add_argument("-ra", "--rope_alpha", type = float, help = "RoPE alpha value (NTK)")
parser.add_argument("-hb", "--head_bits", type = int, default = 6, help = "Target bits per weight (head layer)")
parser.add_argument("-om", "--output_measurement", type = str, help = "Only perform measurement pass, then save measurement to the specified file")
parser.add_argument("-m", "--measurement", type = str, help = "Reuse previous measurement")
parser.add_argument("-r", "--dataset_rows", type = int, default = 100, help = "Number of rows to apply from dataset")
parser.add_argument("-mr", "--measurement_rows", type = int, default = 16, help = "Number of rows to apply from dataset when measuring")
parser.add_argument("-l", "--length", type = int, default = 2048, help = "Max no. tokens per sample")
parser.add_argument("-ml", "--measurement_length", type = int, default = 2048, help = "Max no. tokens per sample when measuring")
parser.add_argument("-so", "--status_output", action = "store_true", help = "Include machine-parseable status updates in console output")
parser.add_argument("-hsol", "--hidden_state_offload_layers", type = int, default = 0, help = "Number of hidden/target states to keep in VRAM. Speed-up but increases VRAM usage")

args = parser.parse_args()

torch.set_printoptions(precision = 7, sci_mode = False, linewidth = 200)

# Check some args

resuming = False
if args.out_dir:
if not args.no_resume:
if os.path.exists(os.path.join(args.out_dir, "job_new.json")):
resuming = True
else:
print(" ## Please specify output/working directory (-o, --out_dir)")
sys.exit()

if not args.in_dir and not resuming:
print(" ## Please specify input model directory (-i, --in_dir)")
sys.exit()

if args.length > 2048 or args.measurement_length > 2048:
print(" !! Warning: calibration rows > 2048 tokens may result in excessive VRAM use")

if not args.head_bits in qparams_headoptions:
print(f" ## Error: {args.head_bits} is not a supported option for head layer bitrate")
sys.exit()

if args.output_measurement is not None and args.compile_full is not None:
print(" ## Conflicting options: --output_measurement and --compile_full")
sys.exit()

if args.bits < 2 or args.bits > 8:
print(f" !! Warning: target bitrate {args.bits} will likely not be attainable")

if not os.path.exists(args.out_dir):
print(f" ## Error: Directory not found: {args.out_dir}")
sys.exit()

# Create job

def save_job():
global job_file, job
with open(job_file, "w", encoding = "utf8") as f:
f.write(json.dumps(job, indent = 4))

job_file = os.path.join(args.out_dir, "job_new.json")

if args.no_resume or not os.path.exists(job_file):

print(f" -- Beginning new job")
if len(os.listdir(args.out_dir)) != 0:
print(f" !! Warning: Output directory is not empty: {args.out_dir}")

if args.no_resume:
print(f" !! Cleaning output directory: {args.out_dir}")
for filename in os.listdir(args.out_dir):
file_path = os.path.join(args.out_dir, filename)
if os.path.isfile(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)

output_measurement = args.output_measurement
if output_measurement is not None:
if os.path.isdir(output_measurement):
output_measurement = os.path.join(output_measurement, "measurement.json")

job = {"in_dir": args.in_dir,
"out_dir": args.out_dir,
"cal_dataset": args.cal_dataset,
"bits": args.bits,
"dataset_rows": args.dataset_rows,
"measurement_rows": args.measurement_rows,
"length": args.length,
"measurement_length": args.measurement_length,
"head_bits": args.head_bits,
"shard_size": args.shard_size if args.shard_size > 0 else 1024 ** 3, # 1 PB = unlimited,
"compile_full": args.compile_full,
"rope_scale": args.rope_scale,
"rope_alpha": args.rope_alpha,
"output_measurement": output_measurement,
"progress": "begin"}

if args.measurement is not None:
with open(args.measurement, "r", encoding = "utf8") as f:
imp_measurement = json.load(f)
job["measurement"] = imp_measurement["measurement"]
job["last_module_idx"] = imp_measurement["last_module_idx"]
job["reuse_measurement"] = args.measurement

# Resume existing job

if args.no_resume or not os.path.exists(job_file):
pass

else:
print(f" -- Resuming job")
if args.in_dir:
print(f" !! Note: Overriding options with settings from existing job")

with open(job_file, "r", encoding = "utf8") as f:
resume_job = json.load(f)

# Override keys in existing job
del resume_job["out_dir"]

job.update(resume_job)
if "invalid" in job:
print(" ** Error: Corrupted job")
sys.exit()

if job["progress"] == "finished":
print(" !! Job is already finished")
sys.exit()

# Feedback

print(f" -- Input: {job['in_dir']}")
print(f" -- Output: {job['out_dir']}")
if job.get("cal_dataset"):
print(f" -- Calibration dataset: {job['cal_dataset']}, {job['dataset_rows']} / {job['measurement_rows']} rows, {job['length']} tokens per sample")
else:
print(f" -- Using default calibration dataset")
if job["output_measurement"] is None:
print(f" -- Target bits per weight: {job['bits']} (decoder), {job['head_bits']} (head)")
print(f" -- Max shard size: {job['shard_size']} MB")
else:
print(f" -- Measurement will be saved to {job['output_measurement']}")
print(f" !! Conversion script will end after measurement pass")

if job['rope_scale']: print(f" -- RoPE scale: {job['rope_scale']:.2f}")
if job['rope_alpha']: print(f" -- RoPE alpha: {job['rope_alpha']:.2f}")

# Make sure subfolders exist

if job.get("compile_full"):
print(f" -- Full model will be compiled to: {job['compile_full']}")
if os.path.exists(job["compile_full"]):
if not os.path.isdir(job["compile_full"]):
print(f" ## Error: Output path {job['compile_full']} exists but is not a directory")
sys.exit()
if len(os.listdir(job["compile_full"])) > 0:
print(f" !! Warning: Output path {job['compile_full']} exists but is not empty")

out_tensor_dir = os.path.join(job["out_dir"], "out_tensor")
if not os.path.exists(out_tensor_dir):
os.makedirs(out_tensor_dir)

# Create config

config = ExLlamaV2Config()
config.model_dir = job['in_dir']
config.qkv_embed = False
config.prepare()

# Tokenizer

tokenizer = ExLlamaV2Tokenizer(config)

# Set scaling for input model

if job["rope_scale"] is not None: config.scale_pos_emb = job["rope_scale"]
if job["rope_alpha"] is not None: config.scale_alpha_value = job["rope_alpha"]

# Create model without loading weights

model = ExLlamaV2(config)
model.load(lazy = True)

# Limit context length if necessary

if model.config.arch.rope_style == RopeStyle.NONE:
max_ctx = model.config.max_seq_len
if job["length"] > max_ctx:
print (f" !! Warning: Reducing calibration length to model max context: {max_ctx}")
job["length"] = max_ctx
if job["measurement_length"] > max_ctx:
print (f" !! Warning: Reducing measurement calibration length to model max context: {max_ctx}")
job["measurement_length"] = max_ctx

# Overridable settings

job["status_output"] = args.status_output

# Do the things

save_job()

while True:

progress = job["progress"]

if progress == "begin":

if "reuse_measurement" in job:

print(f" -- Reusing measurement: {job['reuse_measurement']}")
job["progress"] = "optimize"
save_job()

else:

print(f" -- Tokenizing samples (measurement)...")
tokenize(job, save_job, tokenizer, measure = True)
job["progress"] = "initial_embeddings"
save_job()

if progress == "initial_embeddings":

print(f" -- Token embeddings (measurement)...")
embeddings(job, save_job, model)
job["progress"] = "measure_quant"
save_job()

if progress == "measure_quant":
print(f" -- Measuring quantization impact...")

model.unload()
config.max_output_len = 16
model = ExLlamaV2(config)
model.load(lazy = True)

status = measure_quant(job, save_job, model, args.hidden_state_offload_layers) # capturing the graceful exits
if status == "interrupted":
print("Process interrupted. Exiting gracefully.")
save_job()
sys.exit(1)
if job["output_measurement"] is None:
job["progress"] = "optimize"
else:
job["progress"] = "finished"
save_job()

model.unload()
config.max_output_len = None
model = ExLlamaV2(config)
model.load(lazy = True)

if progress == "optimize":

print(f" -- Optimizing...")
optimize(job, save_job, model)
job["progress"] = "tokens_cal"
save_job()

if progress == "tokens_cal":

print(f" -- Tokenizing samples...")
tokenize(job, save_job, tokenizer)
job["progress"] = "embeddings"
save_job()

if progress == "embeddings":
print(f" -- Token embeddings again...")
embeddings(job, save_job, model)
job["progress"] = "quant"
save_job()

if progress == "quant":

print(f" -- Quantizing...")
quant(job, save_job, model)
job["progress"] = "compile"
save_job()

if progress == "compile":

print(f" -- Compiling output file...")
compile_model(job, save_job, model)
job["progress"] = "finished"
save_job()

if progress == "finished": break

print(f" -- Finished")





import exllamav2.conversion.convert_exl2
Loading

0 comments on commit 921d4a2

Please sign in to comment.