-
-
Notifications
You must be signed in to change notification settings - Fork 1.7k
Projects using openHAB Science and University
All students are facing the same problem while writing their Bachelor- or Masterthesis: they are lacking of time. openHAB helps them to focus on the really relevant parts of their work rather than "wasting" their time on implementing foundation/framework services.
TU Dortmund University - Communication Technology Institute
For presentation and validation the Communication Technology Insitute realized the Connected Home Lab in 2013. Students can validate their project results in a appartement like environment. Futhermore proof-of-concept demonstrators show the results of research projects.
One major problem in the area of home automation and smart home is the number of different technologies, vendors and eco-systems. The usage of a middleware is necessary to provide uniform access to different ressources in a home network.
openHAB offers a elaborated open source framework based on OSGI with commercially comparable UI and performance.
openHAB has commercially comparable UI and performance. This is why, we can focus on the communication technology and use the "higher layers" without modification.
We implemented the fritzbox-aha binding. By communicating with the daemon running on the fritbox, we can control and monitor the FritzDECT sockets.
We implemented the Homematic binding with the CUL-USB-Stick. Instead of relying on the CCU (HM central station), OpenHAB can communicate directly over a USB 868 MHz transceiver with HM devices.
Smart Home system will be integrated with Smart Grid applications in the future. Currently, smart meters with wMBus interface are rolled out in Germany. We implemented a wMBus binding, which communicates over a serial interface with a 868 MHz transceiver. With the correct serial number of the smart meter, the encrypted packets sent periodically (1 min - 10 min) can be received. This way, the energy consumption of the houshold can be monitored with OpenHAB.
Universidad CEU Cardenal Herrera
The SMLsystem is a modular house built basically using wood. It was designed to be an energy self-sufficient house, using passive strategies and water heating systems to reduce the amount of electrical power needed to operate the house.
The energy supply of the SMLsystem is divided into solar power generation and a domestic hot water (DHW) system. The photovoltaic solar system is responsible for generating electric power by using twenty-one solar panels. These panels are installed on the roof and at the east and west facades. The energy generated by this system is managed by a device to inject energy into the house, or in case there is an excess of power, to the grid or a battery system. The thermal power generation is performed using a solar panel that produces DHW for electric energy savings.
Details can be found in this open paper: http://www.mdpi.com/1996-1073/6/9/4639/pdf
All the systems are connected to a central openHAB instance, which controls the full house.
http://sdeurope.uch.ceu.es/2012/project/
Stuttgart Media University
The URC Lab is a showcase for state-of-the-art smart home technology, paired with a user experience that is tailored to the individual users. We use the Universal Remote Console technology (URC, standardized as ISO/IEC 24752) as a framework for pluggable user interfaces. Different users get different user interfaces, depending on their needs and preferences, and depending on their controller devices that they bring with them. This is a requirement for the acceptance of smart home technologies in the context of Ambient Assisted Living (AAL).
Note: The URC Lab is currently set up and will be fully functioning by end of 2014 approximately.
(not yet)
Through openHAB we can connect our gateway, the Universal Control Hub (UCH) with virtually any backend device.
(not yet)
(not yet)
University of Applied Sciences Cologne
http://www.verwaltung.fh-koeln.de/aktuelles/2013/08/verw_msg_06233.html
Polytech'Grenoble
SmartCampus is an end-of-studies project at Polytech'Grenoble, led by 5 RICM students (studying Networks and Multimedia Communication) during 2 months. The aim of this project is to create an augmented reality (AR) and crowdsourcing application for the Grenoble campus.
In fine, this application will allow the user to access multiple types of information:
- crowdsourcing information, such as the length of wating lines;
- general information about buildings and various components;
- variable information like transport time-tables and cafeteria menus;
- sensor data, such as atmospheric and meteorological sensors.
Each building is managed by an admin who can handle the information published. He can also activate or desactivate sensors using a dedicated interface.
To simulate the real usage of our application on the campus, we created a simplified model of the Grenoble campus, using mainly carpeting and wood (laser-cutting technology).
We use openHAB to monitor and actuate in a unified interface several devices: sensors (moisture, air pollution, etc.) and actuators.
https://www.youtube.com/watch?v=yzhQsh858uI&feature=youtu.be --> turning LEDs on and off using OpenHAB
https://www.youtube.com/watch?v=jeICG9IgD6E --> Air quality sensor data updated in the OpenHAB interface
Project's mailing list: [email protected]
OFFIS e.V., Oldenburg
OFFIS is an independent institute of computer science closely tied to the University of Oldenburg, Germany. A large part of our health-related research revolves around Ambient Assisted Living (AAL) -- developing and integrating technical concepts which improve home care and support for elderly and those in need.
The IDEAAL Home Lab is a laboratory built to showcase some of our research results, as well as allowing realistic evaluations and demonstrations. Over the years, we have developed and used a vast amount of different platforms, sensors and technologies to implement our ideas. OpenHAB helps us to bring together these technologies and to further utilize the information we collect.
OpenHAB acts as a data collection and distribution node, facilitating access to all sensor data and allowing combined processing. Using rules and the various UIs, it also simplified the implementation of and access to different home automation scenarios.
IDEAAL - Ambient Assisted Living at OFFIS
ℹ Please find all documentation for openHAB 2 under http://docs.openhab.org.
The wiki pages here contain (outdated) documentation for the older openHAB 1.x version. Please be aware that a lot of core details changed with openHAB 2.0 and this wiki as well as all tutorials found for openHAB 1.x might be misleading. Check http://docs.openhab.org for more details and consult the community forum for all remaining questions.
- Classic UI
- iOS Client
- Android Client
- Windows Phone Client
- GreenT UI
- CometVisu
- Kodi
- Chrome Extension
- Alfred Workflow
- Cosm Persistence
- db4o Persistence
- Amazon DynamoDB Persistence
- Exec Persistence
- Google Calendar Presence Simulator
- InfluxDB Persistence
- JDBC Persistence
- JPA Persistence
- Logging Persistence
- mapdb Persistence
- MongoDB Persistence
- MQTT Persistence
- my.openHAB Persistence
- MySQL Persistence
- rrd4j Persistence
- Sen.Se Persistence
- SiteWhere Persistence
- AKM868 Binding
- AlarmDecoder Binding
- Anel Binding
- Arduino SmartHome Souliss Binding
- Asterisk Binding
- Astro Binding
- Autelis Pool Control Binding
- BenQ Projector Binding
- Bluetooth Binding
- Bticino Binding
- CalDAV Binding
- Chamberlain MyQ Binding
- Comfo Air Binding
- Config Admin Binding
- CUL Transport
- CUL Intertechno Binding
- CUPS Binding
- DAIKIN Binding
- Davis Binding
- DD-WRT Binding
- Denon Binding
- digitalSTROM Binding
- DIY on XBee Binding
- DMX512 Binding
- DSC Alarm Binding
- DSMR Binding
- eBUS Binding
- Ecobee Binding
- EDS OWSever Binding
- eKey Binding
- Energenie Binding
- EnOcean Binding
- Enphase Energy Binding
- Epson Projector Binding
- Exec Binding
- Expire Binding
- Fatek PLC Binding
- Freebox Binding
- Freeswitch Binding
- Frontier Silicon Radio Binding
- Fritz AHA Binding
- Fritz!Box Binding
- FritzBox-TR064-Binding
- FS20 Binding
- Garadget Binding
- Global Caché IR Binding
- GPIO Binding
- HAI/Leviton OmniLink Binding
- HDAnywhere Binding
- Heatmiser Binding
- Homematic / Homegear Binding
- Horizon Mediabox Binding
- HTTP Binding
- IEC 62056-21 Binding
- IHC / ELKO Binding
- ImperiHome Binding
- Insteon Hub Binding
- Insteon PLM Binding
- IPX800 Binding
- IRtrans Binding
- jointSPACE-Binding
- KM200 Binding
- KNX Binding
- Koubachi Binding
- LCN Binding
- LightwaveRF Binding
- Leviton/HAI Omnilink Binding
- Lg TV Binding
- Logitech Harmony Hub
- MailControl Binding
- MAX!Cube-Binding
- MAX! CUL Binding
- MCP23017 I/O Expander Binding
- MCP3424 ADC Binding
- MiLight Binding
- MiOS Binding
- Mochad X10 Binding
- Modbus Binding
- MPD Binding
- MQTT Binding
- MQTTitude binding
- MystromEcoPower Binding
- Neohub Binding
- Nest Binding
- Netatmo Binding
- Network Health Binding
- Network UPS Tools Binding
- Nibe Heatpump Binding
- Nikobus Binding
- Novelan/Luxtronic Heatpump Binding
- NTP Binding
- One-Wire Binding
- Onkyo AV Receiver Binding
- Open Energy Monitor Binding
- OpenPaths presence detection binding
- OpenSprinkler Binding
- OSGi Configuration Admin Binding
- Panasonic TV Binding
- panStamp Binding
- Philips Hue Binding
- Picnet Binding
- Piface Binding
- PiXtend Binding
- pilight Binding
- Pioneer-AVR-Binding
- Plex Binding
- Plugwise Binding
- PLCBus Binding
- PowerDog Local API Binding
- Powermax alarm Binding
- Primare Binding
- Pulseaudio Binding
- Raspberry Pi RC Switch Binding
- RFXCOM Binding
- RWE Smarthome Binding
- Sager WeatherCaster Binding
- Samsung AC Binding
- Samsung TV Binding
- Serial Binding
- Sallegra Binding
- Satel Alarm Binding
- Siemens Logo! Binding
- SimpleBinary Binding
- Sinthesi Sapp Binding
- Smarthomatic Binding
- Snmp Binding
- Somfy URTSI II Binding
- Sonance Binding
- Sonos Binding
- Souliss Binding
- Squeezebox Binding
- Stiebel Eltron Heatpump
- Swegon ventilation Binding
- System Info Binding
- TA CMI Binding
- TCP/UDP Binding
- Tellstick Binding
- TinkerForge Binding
- Tivo Binding
- UCProjects.eu Relay Board Binding
- UPB Binding
- VDR Binding
- Velleman-K8055-Binding
- Wago Binding
- Wake-on-LAN Binding
- Waterkotte EcoTouch Heatpump Binding
- Weather Binding
- Wemo Binding
- Withings Binding
- XBMC Binding
- xPL Binding
- Yamahareceiver Binding
- Zibase Binding
- Z-Wave Binding
- Asterisk
- DoorBird
- FIND
- Foscam IP Cameras
- LG Hombot
- Worx Landroid
- Heatmiser PRT Thermostat
- Google Calendar
- Linux Media Players
- Osram Lightify
- Rainforest EAGLE Energy Access Gateway
- Roku Integration
- ROS Robot Operating System
- Slack
- Telldus Tellstick
- Zoneminder
- Wink Hub (rooted)
- Wink Monitoring
- openHAB Cloud Connector
- Google Calendar Scheduler
- Transformations
- XSLT
- JSON
- REST-API
- Security
- Service Discovery
- Voice Control
- BritishGasHive-Using-Ruby
- Dropbox Bundle
A good source of inspiration and tips from users gathered over the years. Be aware that things may have changed since they were written and some examples might not work correctly.
Please update the wiki if you do come across any out of date information.
- Rollershutter Bindings
- Squeezebox
- WAC Binding
- WebSolarLog
- Alarm Clock
- Convert Fahrenheit to Celsius
- The mother of all lighting rules
- Reusable Rules via Functions
- Combining different Items
- Items, Rules and more Examples of a SmartHome
- Google Map
- Controlling openHAB with Android
- Usecase examples
- B-Control Manager
- Spell checking for foreign languages
- Flic via Tasker
- Chromecast via castnow
- Speedtest.net integration