forked from MenghaoGuo/Awesome-Vision-Attentions
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request MenghaoGuo#23 from uyzhang/main
update
- Loading branch information
Showing
2 changed files
with
126 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,40 @@ | ||
# PCT: Point Cloud Transformer (CVMJ 2021) | ||
|
||
import jittor as jt | ||
from jittor import nn | ||
|
||
|
||
class SA_Layer(nn.Module): | ||
def __init__(self, channels): | ||
super(SA_Layer, self).__init__() | ||
self.q_conv = nn.Conv1d(channels, channels // 4, 1, bias=False) | ||
self.k_conv = nn.Conv1d(channels, channels // 4, 1, bias=False) | ||
self.q_conv.weight = self.k_conv.weight | ||
self.v_conv = nn.Conv1d(channels, channels, 1) | ||
self.trans_conv = nn.Conv1d(channels, channels, 1) | ||
self.after_norm = nn.BatchNorm1d(channels) | ||
self.act = nn.ReLU() | ||
self.softmax = nn.Softmax(dim=-1) | ||
|
||
def execute(self, x): | ||
x_q = self.q_conv(x).permute(0, 2, 1) # b, n, c | ||
x_k = self.k_conv(x) # b, c, n | ||
x_v = self.v_conv(x) | ||
energy = nn.bmm(x_q, x_k) # b, n, n | ||
attention = self.softmax(energy) | ||
attention = attention / (1e-9 + attention.sum(dim=1, keepdims=True)) | ||
x_r = nn.bmm(x_v, attention) # b, c, n | ||
x_r = self.act(self.after_norm(self.trans_conv(x - x_r))) | ||
x = x + x_r | ||
return x | ||
|
||
|
||
def main(): | ||
attention_block = SA_Layer(64) | ||
input = jt.rand([4, 64, 32]) | ||
output = attention_block(input) | ||
print(input.size(), output.size()) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
# Decoupled spatial-temporal transformer for video inpainting (arXiv 2021) | ||
import math | ||
import jittor as jt | ||
from jittor import nn | ||
|
||
|
||
class Attention(nn.Module): | ||
""" | ||
Compute 'Scaled Dot Product Attention | ||
""" | ||
|
||
def __init__(self, p=0.1): | ||
super(Attention, self).__init__() | ||
self.dropout = nn.Dropout(p=p) | ||
|
||
def execute(self, query, key, value): | ||
scores = jt.matmul(query, key.transpose(-2, -1) | ||
) / math.sqrt(query.size(-1)) | ||
p_attn = nn.softmax(scores, dim=-1) | ||
p_attn = self.dropout(p_attn) | ||
p_val = jt.matmul(p_attn, value) | ||
return p_val, p_attn | ||
|
||
|
||
class MultiHeadedAttention(nn.Module): | ||
""" | ||
Take in model size and number of heads. | ||
""" | ||
|
||
def __init__(self, tokensize, d_model, head, mode, p=0.1): | ||
super().__init__() | ||
self.mode = mode | ||
self.query_embedding = nn.Linear(d_model, d_model) | ||
self.value_embedding = nn.Linear(d_model, d_model) | ||
self.key_embedding = nn.Linear(d_model, d_model) | ||
self.output_linear = nn.Linear(d_model, d_model) | ||
self.attention = Attention(p=p) | ||
self.head = head | ||
self.h, self.w = tokensize | ||
|
||
def execute(self, x, t): | ||
bt, n, c = x.size() | ||
b = bt // t | ||
c_h = c // self.head | ||
key = self.key_embedding(x) | ||
query = self.query_embedding(x) | ||
value = self.value_embedding(x) | ||
if self.mode == 's': | ||
key = key.view(b, t, n, self.head, c_h).permute(0, 1, 3, 2, 4) | ||
query = query.view(b, t, n, self.head, c_h).permute(0, 1, 3, 2, 4) | ||
value = value.view(b, t, n, self.head, c_h).permute(0, 1, 3, 2, 4) | ||
att, _ = self.attention(query, key, value) | ||
att = att.permute(0, 1, 3, 2, 4).view(bt, n, c) | ||
elif self.mode == 't': | ||
key = key.view(b, t, 2, self.h//2, 2, self.w//2, self.head, c_h) | ||
key = key.permute(0, 2, 4, 6, 1, 3, 5, 7).view( | ||
b, 4, self.head, -1, c_h) | ||
query = query.view(b, t, 2, self.h//2, 2, | ||
self.w//2, self.head, c_h) | ||
query = query.permute(0, 2, 4, 6, 1, 3, 5, 7).view( | ||
b, 4, self.head, -1, c_h) | ||
value = value.view(b, t, 2, self.h//2, 2, | ||
self.w//2, self.head, c_h) | ||
value = value.permute(0, 2, 4, 6, 1, 3, 5, 7).view( | ||
b, 4, self.head, -1, c_h) | ||
att, _ = self.attention(query, key, value) | ||
att = att.view(b, 2, 2, self.head, t, self.h//2, self.w//2, c_h) | ||
att = att.permute(0, 4, 1, 5, 2, 6, 3, | ||
7).view(bt, n, c) | ||
output = self.output_linear(att) | ||
return output | ||
|
||
|
||
def main(): | ||
attention_block_s = MultiHeadedAttention( | ||
tokensize=[4, 8], d_model=64, head=4, mode='s') | ||
attention_block_t = MultiHeadedAttention( | ||
tokensize=[4, 8], d_model=64, head=4, mode='t') | ||
input = jt.rand([8, 32, 64]) | ||
output = attention_block_s(input, 2) | ||
output = attention_block_t(output, 2) | ||
print(input.size(), output.size()) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |