Skip to content
forked from nusnlp/m2scorer

MaxMatch (M^2) Scorer - Evaluation program for grammatical error correction systems.

License

Notifications You must be signed in to change notification settings

outwrite/m2scorer

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

To install this version of the m2scorer, use the following command

pip install https://github.com/outwrite/m2scorer.git

M^2Scorer

This is the scorer for evaluation of grammatical error correction systems. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License (See LICENSE).

If you are using the NUS M^2 scorer in your work, please include a citation of the following paper:

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better Evaluation for Grammatical Error Correction. In Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL 2012).

Contents

  1. Quickstart
  2. Pre-requisites
  3. Using the scorer
    3.1 System output format
    3.2 Scorer's gold standard format
  4. Converting the CoNLL-2014 data format
  5. Revisions
    5.1 Alternative edits
    5.2 F-beta measure
    5.3 Handling of insertion edits
    5.4 Bug fix for scoring against multiple sets of gold edits, and dealing with sequences of insertion/deletion edits

Quickstart

./m2scorer [-v] SYSTEM SOURCE_GOLD 

SYSTEM = the system output in sentence-per-line plain text. SOURCE_GOLD = the source sentences with gold edits.

Pre-requisites

The following dependencies have to be installed to use the M^2 scorer.

  • Python (>= 2.6.4, <= 3.7, older and newer versions might work but are not tested)
  • nltk (http://www.nltk.org, needed for sentence splitting)

Using the scorer

Usage: m2scorer [OPTIONS] SYSTEM SOURCE_GOLD

where
SYSTEM - system output, one sentence per line
SOURCE_GOLD - source sentences with gold token edits

OPTIONS
  -v    --verbose             -  print verbose output
  --very_verbose              -  print lots of verbose output
  --max_unchanged_words N     -  Maximum unchanged words when extracting edits. Default = 2.
  --ignore_whitespace_casing  -  Ignore edits that only affect whitespace and casing. Default no.
  --beta                      -  Set the ratio of recall importance against precision. Default = 0.5.
  --timeout                   -  Max number of seconds per sample

2.1 System output format

The sentences should be in tokenized plain text, sentence-per-line format.

Format:

<tokenized system output for sentence 1>
<tokenized system output for sentence 2>
 ...

Examples of tokenization:
Original : He said, "We shouldn't go to the place. It'll kill one of us."
Tokenized : He said , " We should n't go to the place . It 'll kill one of us . "

Note: Tokenization in the CoNLL-2014 shared task uses NLTK word tokenizer.

Sample output:
===> system <=== A cat sat on the mat . The Dog .

Scorer's gold standard format

SOURCE_GOLD = source sentences (i.e. input to the error correction system) and the gold annotation in TOKEN offsets (starting from zero).

Format:

S <tokenized system output for sentence 1>
A <token start offset> <token end offset>|||<error type>|||<correction1>||<correction2||..||correctionN|||<required>|||<comment>|||<annotator id>
A <token start offset> <token end offset>|||<error type>|||<correction1>||<correction2||..||correctionN|||<required>|||<comment>|||<annotator id>

S <tokenized system output for sentence 2>
A <token start offset> <token end offset>|||<error type>|||<correction1>||<correction2||..||correctionN|||<required>|||<comment>|||<annotator id>

Notes:

  • Each source sentence should appear on a single line starting with "S "
  • Each source sentence is followed by zero or more annotations.
  • Each annotation is on a separate line starting with "A ".
  • Sentences are separated by one or more empty lines.
  • The source sentences need to be tokenized in the same way as the system output.
  • Start and end offset for annotations are in token offsets (starting from zero).
  • The gold edits can include one or more possible correction strings. Multiple corrections should be separate by '||'.
  • The error type, required field, and comment are not used for scoring at the moment. You can put dummy values there.
  • The annotator ID is used to identify a distinct annotation set by which system edits will be evaluated.
    • Each distinct annotation set, identified by an annotator ID, is an alternative
    • If one sentence has multiple annotator IDs, score will be computed for each annotator.
    • If one of the multiple annotation alternatives is no edit at all, an edit with type 'noop' or with offsets '-1 -1' must be specified.
    • The final score for the sentence will use the set of edits by an annotation set maximizing the score.

Example:

The gold annotation file can be found here: example/source_gold

S The cat sat at mat .
A 3 4|||Prep|||on|||REQUIRED|||-NONE-|||0
A 4 4|||ArtOrDet|||the||a|||REQUIRED|||-NONE-|||0

S The dog .
A 1 2|||NN|||dogs|||REQUIRED|||-NONE-|||0
A -1 -1|||noop|||-NONE-|||-NONE-|||-NONE-|||1

S Giant otters is an apex predator .
A 2 3|||SVA|||are|||REQUIRED|||-NONE-|||0
A 3 4|||ArtOrDet|||-NONE-|||REQUIRED|||-NONE-|||0
A 5 6|||NN|||predators|||REQUIRED|||-NONE-|||0
A 1 2|||NN|||otter|||REQUIRED|||-NONE-|||1

Let the system output, example/system be

A cat sat on the mat .
The dog .
Giant otters are apex predator .

Run the M^2Scorer as follows:

./m2scorer example/system example/source_gold 

The evaluation output will be will be:

Precision   : 0.8000
Recall      : 0.8000
F_0.5       : 0.8000

Explanation: For the first sentence, the system makes two valid edits {(at-> on), (\epsilon -> the)} and one invalid edit (The -> A).

For the second sentence, despite missing one gold edit (dog -> dogs) according to annotation set 0, the system misses nothing according to set 1.

For sentence #3, according to annotation set 0, the system makes two valid edits {(is -> are), (an -> \epsilon)} and misses one edit (predator -> predators); however according to set 1, the system makes two unnecessary edits {(is -> are), (an -> \epsilon)} and misses one edit (otters -> otter).

By the case above, there are four valid edits, one unnecessary edit, and one missing edit. Therefore precision is 4/5 = 0.8. Similarly for recall. In the above example, the beta value for the F-measure is 0.5 (the default value).

###Converting the CoNLL-2014 data format The data format used in the M^2 scorer differs from the format used in the CoNLL-2014 shared task (http://www.comp.nus.edu.sg/~nlp/conll14st.html) in two aspects:

  • sentence-level edits
  • token edit offsets

To convert source files and gold edits from the CoNLL-2014 format into the M^2 format, run the preprocessing script bundled with the CoNLL-2014 training data.

About

MaxMatch (M^2) Scorer - Evaluation program for grammatical error correction systems.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%