Skip to content

Unofficial implementation of paper "InstructionNER: A Multi-Task Instruction-Based Generative Framework for Few-shot NER" (https://arxiv.org/pdf/2203.03903v1.pdf)

License

Notifications You must be signed in to change notification settings

ovbystrova/InstructionNER

Repository files navigation

InstructionNER: A Multi-Task Instruction-Based Generative Framework for Few-shot NER

python 3.8 license pypi version pypi downloads

tests codecov

Unofficial implementation of InstructionNER.

Screenshot

Requirements

Python >=3.8

Installation

pip install instruction-ner

(Alternative via requirements)

pip install -r requirements/requirements.in # for training purposes
pip install -r requirements/requirements_test.in # for tests
pip install -r requirements/requirements_dev.in # for inference only

Data Preparation

In order to make a unified training interface, you can convert your raw input data (supported dataset formats: conll, spacy, mit) with the following script:

instruction_ner-prepare-data \
--path_to_file 'data/conll2003/train.txt' \
--dataset_type 'conll2003' \
--output_folder 'data/conll2003' \

This script converts every dataset to a list of sentences. Every sentence is like this:

{
    "context": "SOCCER - JAPAN GET LUCKY WIN , CHINA IN SURPRISE DEFEAT .",
    "entity_values": {
            "LOC": [
                "JAPAN"
            ],
            "PER": [
                "CHINA"
            ]
        },
    "entity_spans": [
            {
                "start": 9,
                "end": 14,
                "label": "LOC"
            },
            {
                "start": 31,
                "end": 36,
                "label": "PER"
            }
        ]
}

Training

Script for training T5 model:

instruction_ner-train \
--path_to_instructions 'instructions.json' \
--path_to_options 'options.json' \
--log_dir 'runs/test_run' \
--eval_every_n_batches 200 \
--pred_every_n_batches 200 \
--path_to_model_config 'config.yaml' \
--path_to_model_save 'runs/model/' \

Arguments:

  • --path_to_instructions - file with instruction prompts
  • --path_to_options - file with mapping dataset to its entities
  • --log_dir - where to log tensorboard
  • --eval_every_n_batches - do evaluation every n batches
  • --pred_every_n_batches - write n sample prediction every n batches
  • --path_to_model_config - path to all necessary information for model
  • --path_to_model_save - where to save model

Evaluation

Script for evaluation of the trained model:

instruction_ner-evaluate \
--model_path_or_name 'olgaduchovny/t5-base-qa-ner-conll' \
--path_to_model_config 'config.yaml' \
--path_to_instructions 'instructions.json' \
--path_to_options 'options.json' \

Arguments:

  • --model_path_or_name - path to trained model or HF model name
  • --path_to_model_config - path to all necessary information for model
  • --path_to_instructions - file with instruction prompts
  • --path_to_options - file with mapping dataset to its entities

Evaluation Results

Dataset Precision Recall F1-Score (weighted)
CONLL-2003 0.862 0.843 0.852
MIT MOVIE 0.792 0.845 0.809
MIT REST 0.766 0.771 0.768

Prediction Sample

Sentence: The protest , which attracted several thousand supporters , coincided with the 18th anniversary of Spain 's constitution .
Instruction: please extract entities and their types from the input sentence, all entity types are in options
Options: ORG, PER, LOC

Prediction (raw text): Spain is a LOC.

Inference

Models

t5-base-ner-conll

t5-base-ner-mit-restaurant

t5-base-ner-mit-movie

Code

from instruction_ner.model import Model

model = Model(
    model_path_or_name="olgaduchovny/t5-base-ner-conll",
    tokenizer_path_or_name="olgaduchovny/t5-base-ner-conll"
)

options = ["LOC", "PER", "ORG", "MISC"]

instruction = "please extract entities and their types from the input sentence, " \
              "all entity types are in options"

text = "My name is Olga. I am 24 years old. I live in Moscow and work at Sber AI Center as a Senior NLP Data Scientist." \
        "This is my reporitory to test generative NER problem with T5 model."

generation_kwargs = {
    "num_beams": 2,
    "max_length": 128
}

pred_text, pred_spans = model.predict(
    text=text,
    generation_kwargs=generation_kwargs,
    instruction=instruction,
    options=options
)

>>> ('Olga is a PER, Moscow is a LOC, Sber AI Center is an ORG, NLP is a MISC.',
 [(11, 15, 'PER'), (46, 52, 'LOC'), (65, 79, 'ORG'), (92, 95, 'MISC')])

Citation

@article{wang2022instructionner,
  title={Instructionner: A multi-task instruction-based generative framework for few-shot ner},
  author={Wang, Liwen and Li, Rumei and Yan, Yang and Yan, Yuanmeng and Wang, Sirui and Wu, Wei and Xu, Weiran},
  journal={arXiv preprint arXiv:2203.03903},
  year={2022}
}

About

Unofficial implementation of paper "InstructionNER: A Multi-Task Instruction-Based Generative Framework for Few-shot NER" (https://arxiv.org/pdf/2203.03903v1.pdf)

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages