Install the dependencies.
conda create -n avalonbench python=3.9
conda activate avalonbench
pip install -r requirements.txt
You need to fill your OPENAI API KEY in configs/agents/openai-chat
first. Please replace <OPENAI_API_KEY>
in Bearer <OPENAI_API_KEY>
with your key.
Start the game (3 is the number of workers)
python -m src.start_task -a --start avalon-dev-single 3
Open a new terminal and start the assigner
python -m src.assigner --config ./configs/assignments/test_avalon.yaml
- You can modify the file
configs/tasks/avalon.yaml
to configure the agent list. A config file looks like this:
default:
module: "src.server.tasks.avalon.AvalonBench"
parameters:
num_players: 5
discussion: False
avalon-dev-naive:
parameters:
name: "AvalonBench-dev-naive"
data_file: "data/avalon/dev.json"
agent_list: ["naive", "naive", "naive", "naive", "naive"]
avalon-dev-single:
parameters:
name: "AvalonBench-dev-single"
data_file: "data/avalon/dev.json"
agent_list: ["llm", "naive", "naive", "naive", "naive"]
where naive
stands for the naive bots. Agents will play the roles with the same index in the data file (see following).
Note: There should only be one "llm" in the `agent_list`
- You can also add data in
data/avalon/dev.json
(Note: Currently we only support the 5-player game setting, which includes 1 Merlin, 2 Servants, 1 Minion and 1 Assassin). A data item looks like this:
{
"num_players": 5,
"quest_leader": 0,
"role_names": ["Assassin", "Servant", "Servant", "Merlin", "Minion"]
}
where quest_leader
is the id of the initial quest leader in this game. You can change the game setup by altering quest_leader
with number from 0 to 4, and by permuting role_names
.
You can also start a naive experiment using:
python -m src.start_task -a --start avalon-dev-naive 3
where all the agents are naive bots. For details of the naive strategies, please refer to the paper.
You can also start a Multi-LLM experiment using:
python -m src.start_task -a --start avalon-dev-multi 3
where all the agents will be Large Language Models.
All the prompts are maintained in src/server/tasks/avalon/prompt.py
. You can find the respective prompts used in src/server/tasks/avalon/agents/llm_with_discussion.py
and src/server/tasks/avalon/wrapper.py
.
We also provide our engines along with examples of usage for developers in avalonbench_dev
.
You can import and use the game engine by running
from engine import AvalonGameEnvironment, AvalonConfig
First input your game configurations into AvalonBasicConfig
, then create an AvalonGameEnvironment
based on that.
For an example of how to use the game engine, see avalonbench_dev/avalon/test_engine.py