forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add DistilHuBERT (huggingface#14174)
* Add conversion * Rename * Add an integration test and remove layer_norm * Remove layer_norm from the converter * wording * Fix imports
- Loading branch information
Showing
4 changed files
with
270 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
218 changes: 218 additions & 0 deletions
218
src/transformers/models/hubert/convert_distilhubert_original_s3prl_checkpoint_to_pytorch.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,218 @@ | ||
# coding=utf-8 | ||
# Copyright 2021 The HuggingFace Inc. team. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
"""Convert Hubert checkpoint.""" | ||
|
||
|
||
import argparse | ||
|
||
import torch | ||
|
||
from s3prl.hub import distilhubert | ||
from transformers import HubertConfig, HubertModel, Wav2Vec2FeatureExtractor, logging | ||
|
||
|
||
logging.set_verbosity_info() | ||
logger = logging.get_logger(__name__) | ||
|
||
MAPPING = { | ||
"post_extract_proj": "feature_projection.projection", | ||
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv", | ||
"self_attn.k_proj": "encoder.layers.*.attention.k_proj", | ||
"self_attn.v_proj": "encoder.layers.*.attention.v_proj", | ||
"self_attn.q_proj": "encoder.layers.*.attention.q_proj", | ||
"self_attn.out_proj": "encoder.layers.*.attention.out_proj", | ||
"self_attn_layer_norm": "encoder.layers.*.layer_norm", | ||
"fc1": "encoder.layers.*.feed_forward.intermediate_dense", | ||
"fc2": "encoder.layers.*.feed_forward.output_dense", | ||
"final_layer_norm": "encoder.layers.*.final_layer_norm", | ||
"encoder.layer_norm": "encoder.layer_norm", | ||
"mask_emb": "masked_spec_embed", | ||
} | ||
|
||
|
||
def set_recursively(hf_pointer, key, value, full_name, weight_type): | ||
for attribute in key.split("."): | ||
hf_pointer = getattr(hf_pointer, attribute) | ||
|
||
if weight_type is not None: | ||
hf_shape = getattr(hf_pointer, weight_type).shape | ||
else: | ||
hf_shape = hf_pointer.shape | ||
|
||
assert ( | ||
hf_shape == value.shape | ||
), f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be {value.shape} for {full_name}" | ||
|
||
if weight_type == "weight": | ||
hf_pointer.weight.data = value | ||
elif weight_type == "weight_g": | ||
hf_pointer.weight_g.data = value | ||
elif weight_type == "weight_v": | ||
hf_pointer.weight_v.data = value | ||
elif weight_type == "bias": | ||
hf_pointer.bias.data = value | ||
else: | ||
hf_pointer.data = value | ||
|
||
logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") | ||
|
||
|
||
def recursively_load_weights(fairseq_model, hf_model): | ||
unused_weights = [] | ||
fairseq_dict = fairseq_model.state_dict() | ||
|
||
feature_extractor = hf_model.feature_extractor | ||
|
||
for name, value in fairseq_dict.items(): | ||
is_used = False | ||
if "conv_layers" in name: | ||
load_conv_layer( | ||
name, | ||
value, | ||
feature_extractor, | ||
unused_weights, | ||
hf_model.config.feat_extract_norm == "group", | ||
) | ||
is_used = True | ||
else: | ||
for key, mapped_key in MAPPING.items(): | ||
mapped_key = mapped_key | ||
|
||
if key in name: | ||
is_used = True | ||
if "*" in mapped_key: | ||
layer_index = name.split(key)[0].split(".")[-2] | ||
mapped_key = mapped_key.replace("*", layer_index) | ||
if "weight_g" in name: | ||
weight_type = "weight_g" | ||
elif "weight_v" in name: | ||
weight_type = "weight_v" | ||
elif "weight" in name: | ||
weight_type = "weight" | ||
elif "bias" in name: | ||
weight_type = "bias" | ||
else: | ||
weight_type = None | ||
set_recursively(hf_model, mapped_key, value, name, weight_type) | ||
continue | ||
if not is_used: | ||
unused_weights.append(name) | ||
|
||
logger.warning(f"Unused weights: {unused_weights}") | ||
|
||
|
||
def load_conv_layer(full_name, value, feature_extractor, unused_weights, use_group_norm): | ||
name = full_name.split("conv_layers.")[-1] | ||
items = name.split(".") | ||
layer_id = int(items[0]) | ||
type_id = int(items[1]) | ||
|
||
if type_id == 0: | ||
if "bias" in name: | ||
assert ( | ||
value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape | ||
), f"{full_name} has size {value.shape}, but {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." | ||
feature_extractor.conv_layers[layer_id].conv.bias.data = value | ||
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") | ||
elif "weight" in name: | ||
assert ( | ||
value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape | ||
), f"{full_name} has size {value.shape}, but {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." | ||
feature_extractor.conv_layers[layer_id].conv.weight.data = value | ||
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") | ||
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): | ||
if "bias" in name: | ||
assert ( | ||
value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape | ||
), f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." | ||
feature_extractor.conv_layers[layer_id].layer_norm.bias.data = value | ||
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") | ||
elif "weight" in name: | ||
assert ( | ||
value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape | ||
), f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." | ||
feature_extractor.conv_layers[layer_id].layer_norm.weight.data = value | ||
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") | ||
else: | ||
unused_weights.append(full_name) | ||
|
||
|
||
def convert_config(model): | ||
config = HubertConfig() | ||
fs_config = model.config | ||
|
||
config.activation_dropout = fs_config.activation_dropout | ||
config.apply_spec_augment = False | ||
config.attention_dropout = fs_config.attention_dropout | ||
config.conv_bias = False | ||
conv_layers = eval(fs_config.extractor_conv_feature_layers) | ||
config.conv_dim = [x[0] for x in conv_layers] | ||
config.conv_kernel = [x[1] for x in conv_layers] | ||
config.conv_stride = [x[2] for x in conv_layers] | ||
config.feat_extract_activation = "gelu" | ||
config.feat_extract_norm = "layer" if fs_config.extractor_mode == "layer_norm" else "group" | ||
config.feat_proj_layer_norm = False | ||
config.feat_proj_dropout = 0.0 | ||
config.final_dropout = 0.0 | ||
config.hidden_act = fs_config.activation_fn | ||
config.hidden_dropout = fs_config.dropout | ||
config.hidden_size = fs_config.encoder_embed_dim | ||
config.initializer_range = 0.02 | ||
config.intermediate_size = fs_config.encoder_ffn_embed_dim | ||
config.layer_norm_eps = 1e-5 | ||
config.layerdrop = 0.0 | ||
config.num_attention_heads = fs_config.encoder_attention_heads | ||
config.num_conv_pos_embedding_groups = fs_config.conv_pos_groups | ||
config.num_conv_pos_embeddings = fs_config.conv_pos | ||
config.num_feat_extract_layers = len(conv_layers) | ||
config.num_hidden_layers = fs_config.encoder_layers | ||
|
||
return config | ||
|
||
|
||
@torch.no_grad() | ||
def convert_hubert_checkpoint(pytorch_dump_folder_path, config_path=None): | ||
""" | ||
Copy/paste/tweak model's weights to transformers design. | ||
""" | ||
model = distilhubert().model.model | ||
|
||
if config_path is not None: | ||
config = HubertConfig.from_pretrained(config_path) | ||
else: | ||
config = convert_config(model) | ||
model = model.eval() | ||
|
||
feature_extractor = Wav2Vec2FeatureExtractor( | ||
feature_size=1, | ||
sampling_rate=16000, | ||
padding_value=0, | ||
do_normalize=False, | ||
return_attention_mask=False, | ||
) | ||
hf_model = HubertModel(config) | ||
|
||
recursively_load_weights(model, hf_model) | ||
|
||
feature_extractor.save_pretrained(pytorch_dump_folder_path) | ||
hf_model.save_pretrained(pytorch_dump_folder_path) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") | ||
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") | ||
args = parser.parse_args() | ||
convert_hubert_checkpoint(args.pytorch_dump_folder_path, args.config_path) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters