Skip to content

perazz/fortran-lapack

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

fortran-lapack

This package provides precision-agnostic, high-level linear algebra APIs for real and complex arguments in Modern Fortran. The APIs are similar to NumPy/SciPy operations, and leverage a Modern Fortran implementation of the Reference-LAPACK library.

A full and standardized implementation of the present library has been integrated into the Fortran Standard Library, and as such, most users should seek to access the functionality from stdlib. The present library is kept in place for those who seek a compact implementation of it.

Current API

[solve](@ref la_solve::solve) - Solves a linear matrix equation or a linear system of equations.

Syntax

x = solve(a, b [, overwrite_a] [, err])

Description

Solve linear systems - one (b(:)) or many (b(:,:)).

Arguments

  • a: A real or complex coefficient matrix. If overwrite_a=.true., it is destroyed by the call.
  • b: A rank-1 (one system) or rank-2 (many systems) array of the same kind as a, containing the right-hand-side vector(s).
  • overwrite_a (optional, default = .false.): If .true., input matrix a will be used as temporary storage and overwritten, to avoid internal data allocation.
  • err (optional): A [type(la_state)](@ref la_state_type::la_state) variable.

Return value

For a full-rank matrix, returns an array value that represents the solution to the linear system of equations.

Errors

  • Raises [LINALG_ERROR](@ref la_state_type::linalg_error) if the matrix is singular to working precision.
  • Raises [LINALG_VALUE_ERROR](@ref la_state_type::linalg_value_error) if the matrix and rhs vectors have invalid/incompatible sizes.
  • If err is not present, exceptions trigger an error stop.

lstsq(A, b)

Type: Function
Description: Solve non-square systems in a least squares sense - one (b(:)) or many (b(:,:)).
Optional arguments:

  • cond: Optional SVD cutoff.
  • overwrite_a: Option to let A be destroyed.
  • rank: Return matrix rank.
  • err: Return state handler.

det(A)

Type: Function
Description: Determinant of a scalar or square matrix.
Optional arguments:

  • overwrite_a: Option to let A be destroyed.
  • err: Return state handler.

inv(A)

Type: Function
Description: Inverse of a scalar or square matrix.
Optional arguments:

  • err: Return state handler.

pinv(A)

Type: Function
Description: Moore-Penrose Pseudo-Inverse of a matrix.
Optional arguments:

  • rtol: Optional singular value threshold.
  • err: Return state handler.

invert(A)

Type: Subroutine
Description: In-place inverse of a scalar or square matrix.
Optional arguments:

  • err: Return state handler.

Usage: call invert(A, err=err) where A is replaced with $A^{-1}$.

.inv.A

Type: Operator
Description: Inverse of a scalar or square matrix.

Effect: A is replaced with $A^{-1}$.

.pinv.A

Type: Operator
Description: Moore-Penrose Pseudo-Inverse.

Effect: A is replaced with $A^{-1}$.

svd(A)

Type: Subroutine
Description: Singular value decomposition of $A = U S V^t$.
Optional arguments:

  • s: Singular values.
  • u: Left singular vectors.
  • vt: Right singular vectors.
  • full_matrices: Defaults to .false..
  • err: State handler.

Usage: call svd(A, s, u, vt, full_matrices=.false., err=state).

svdvals(A)

Type: Function
Description: Singular values $S$ from $A = U S V^t$.
Usage: s = svdvals(A) where s is a real array with the same precision as A.

eye(m)

Type: Function
Description: Identity matrix of size m.
Optional arguments:

  • n: Optional column size.
  • mold: Optional datatype (default: real64).
  • err: Error handler.

eigvals(A)

Type: Function
Description: Eigenvalues of matrix $A$.
Optional arguments:

  • err: State handler.

eig(A, lambda)

Type: Subroutine
Description: Eigenproblem of matrix $A`.
Optional arguments:

  • left: Output left eigenvector matrix.
  • right: Output right eigenvector matrix.
  • overwrite_a: Option to let A be destroyed.
  • err: Return state handler.

eigvalsh(A)

Type: Function
Description: Eigenvalues of symmetric or Hermitian matrix $A$.
Optional arguments:

  • upper_a: Choose to use upper or lower triangle.
  • err: State handler.

eigh(A, lambda)

Type: Subroutine
Description: Eigenproblem of symmetric or Hermitian matrix $A`.
Optional arguments:

  • vector: Output eigenvectors.
  • upper_a: Choose to use upper or lower triangle.
  • overwrite_a: Option to let A be destroyed.
  • err: Return state handler.

diag(n, source)

Type: Function
Description: Diagonal matrix from scalar input value.
Optional arguments:

  • err: Error handler.

diag(source)

Type: Function
Description: Diagonal matrix from array input values.
Optional arguments:

  • err: Error handler.

qr(A, Q, R)

Type: Subroutine
Description: QR factorization.
Optional arguments:

  • storage: Pre-allocated working storage.
  • err: Error handler.

qr_space(A, lwork)

Type: Subroutine
Description: QR Working space size.
Optional arguments:

  • err: Error handler.

All procedures work with all types (real, complex) and kinds (32, 64, 128-bit floats).

BLAS, LAPACK

Modern Fortran modules with full explicit typing features are available as modules la_blas and la_lapack. The reference Fortran-77 library, forked from Release 3.10.1, was automatically processed and modernized. The following refactorings are applied:

  • All datatypes and accuracy constants standardized into a module (stdlib-compatible names)
  • Both libraries available for 32, 64 and 128-bit floats
  • Free format, lower-case style
  • implicit none(type, external) everywhere
  • all pure procedures where possible
  • intent added to all procedure arguments
  • Removed DO 10 .... 10 CONTINUE, replaced with do..end do loops or labelled loop_10: do ... cycle loop_10 ... end do loop_10 in case control statements are present
  • BLAS modularized into a single-file module
  • LAPACK modularized into a single-file module
  • All procedures prefixed (with stdlib_, currently).
  • F77-style parameters removed, and numeric constants moved to the top of each module.
  • Ambiguity in single vs. double precision constants (0.0, 0.d0, (1.0,0.0)) removed
  • preprocessor-based OpenMP directives retained.

The single-source module structure hopefully allows for cross-procedural inlining which is otherwise impossible without link-time optimization.

Building

An automated build is currently available via the Fortran Package Manager. To add fortran-lapack to your project, simply add it as a dependency:

[dependencies]
fortran-lapack = { git="https://github.com/perazz/fortran-lapack.git" }

fortran-lapack is compatible with the LAPACK API. If high-performance external BLAS/LAPACK libraries are available, it is sufficient to define macros

[dependencies]
fortran-lapack = { git="https://github.com/perazz/fortran-lapack.git", preprocess.cpp.macros=["LA_EXTERNAL_BLAS", "LA_EXTERNAL_LAPACK"] }

Extension to external BLAS/LAPACK libraries

Generic interfaces to most BLAS/LAPACK functions are exposed to modules la_blas and la_lapack. These interfaces drop the initial letter to wrap a precision-agnostic version. For example, axpy is a precision-agnostic interface to saxpy, daxpy, caxpy, zaxpy, qaxpy, waxpy. The naming convention is:

Type 32-bit 64-bit 128-bit
real s d q
complex c z w

All public interfaces in la_blas and la_lapack allow seamless linking against external libraries via a simple pre-processor flag. When an external library is available, just define macros LA_EXTERNAL_BLAS and LA_EXTERNAL_LAPACK. The kind-agnostic interface will just point to the external function. All such interfaces follow this template:

interface axpy
#ifdef LA_EXTERNAL_BLAS
    ! Use external library
    pure subroutine saxpy(n, a, x, incx, y, incy)
      import :: ik, sp
      integer, parameter :: wp = sp
      integer(ik), intent(in) :: n
      real(wp), intent(in) :: a
      real(wp), intent(in) :: x(*)
      integer(ik), intent(in) :: incx
      real(wp), intent(inout) :: y(*)
      integer(ik), intent(in) :: incy
    end subroutine saxpy
#else
    ! Use internal implementation
    module procedure la_saxpy
#endif
end interface

Licensing

LAPACK is a freely-available software package. It is available from netlib via anonymous ftp and the World Wide Web. Thus, it can be included in commercial software packages (and has been). Credit for the library should be given to the LAPACK authors. The license used for the software is the modified BSD license. According to the original license, we changed the name of the routines and commented the changes made to the original.

Acknowledgments

Part of this work was supported by the Sovereign Tech Fund.