Skip to content

Yolov5 distillation training | Yolov5知识蒸馏训练,支持训练自己的数据

License

Notifications You must be signed in to change notification settings

perfyperfect/Yolov5-distillation-train-inference

 
 

Repository files navigation

代码地址:

https://github.com/Sharpiless/Yolov5-distillation-train-inference

最新版本:

请移步:https://github.com/Sharpiless/yolov5-distillation-5.0

教师模型权重:

链接:https://pan.baidu.com/s/13gq5QwCrRNdRXWzSYUeJIw

提取码:4ppv

蒸馏训练:

python train_distill.py --weights yolov5s.pt \
    --teacher weights/yolov5l_voc.pt --distill_ratio 0.001 \
    --teacher-cfg model/yolov5l.yaml --data data/voc.yaml \
    --epochs 30 --batch-size 16

训练参数:

--weights:预训练模型

--teacher:教师模型权重

--distill-ratio:蒸馏损失权重

--with-gt-loss:是否同时使用ground truth

--soft-loss:是否使用KL散度作为蒸馏的类别损失(缺省使用L2-logits损失)

--full-output-loss:是否使用《Object detection at 200 Frames Per Second》中的损失

这篇文章分别对这几个损失函数做出改进,具体思路为只有当teacher network的objectness value高时,才学习bounding box坐标和class probabilities。

准备数据集:

默认会启用 data/voc.yaml 自动下载VOC数据集进行训练

或者手动运行 data/scripts/get_voc2007.sh 下载

如需修改成自己的数据集,则只需要修改yaml路径即可

实验结果:

数据集:

VOC2007(补充的无标签数据使用VOC2012)

GPU:2080Ti*1

Batch Size:16

Epoches:30

Baseline:Yolov5s

Teacher model:Yolov5l(mAP 0.5:0.95 = 0.541)

这里假设VOC2012中新增加的数据为无标签数据(2k张)。

教师模型 训练方法 蒸馏损失 P R mAP50
正常训练 不使用 0.7756 0.7115 0.7609
Yolov5l output based l2 0.7585 0.7198 0.7644
Yolov5l output based KL 0.7417 0.7207 0.7536
Yolov5m output based l2 0.7682 0.7436 0.7976
Yolov5m output based KL 0.7731 0.7313 0.7931

训练结果

参数和细节正在完善,支持KL散度、L2 logits损失和Sigmoid蒸馏损失等

待做事项:

  • [√] 修改logist输出作为蒸馏损失输入
  • [√] 完善代码结构和相关参数设定
  • [×] 查找为何蒸馏损失不起作用(或者收敛慢)的原因
  • [×] 完善相关实验并测试精度
  • [√] 修改dataloader加快训练速度
  • [√] 修改teacher model的批量推理加快训练速度

可能存在的问题:

  • 1.训练轮数太少没收敛,可能蒸馏训练收敛满最终结果高
  • 2.教师模型是Yolov5l在VOC训练30轮得到的(mAP 0.5:0.95 = 0.541),质量比标注较差影响蒸馏训练的结果
  • 3.可调整的参数还有很多(教师模型的检测、IOU阈值,蒸馏损失种类,蒸馏损失比率等)

我的公众号:

在这里插入图片描述

About

Yolov5 distillation training | Yolov5知识蒸馏训练,支持训练自己的数据

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 91.2%
  • Jupyter Notebook 4.5%
  • Shell 3.6%
  • Dockerfile 0.7%