forked from RobotLocomotion/drake
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbarycentric.h
181 lines (157 loc) · 7.41 KB
/
barycentric.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#pragma once
#include <iterator>
#include <memory>
#include <set>
#include <vector>
#include <Eigen/Dense>
#include "drake/common/drake_assert.h"
#include "drake/common/drake_copyable.h"
#include "drake/common/eigen_types.h"
namespace drake {
namespace math {
/// Represents a multi-linear function (from vector inputs to vector outputs) by
/// interpolating between points on a mesh using (triangular) barycentric
/// interpolation.
///
/// For a technical description of barycentric interpolation, see e.g.
/// Remi Munos and Andrew Moore, "Barycentric Interpolators for Continuous
/// Space and Time Reinforcement Learning", NIPS 1998
///
/// @tparam_double_only
template <typename T>
class BarycentricMesh {
// TODO(russt): This is also an instance of a "linear function approximator"
// -- a class of parameterized functions that take the form
// output = parameters*φ(input),
// where
// parameters is a matrix of size num_outputs x num_features, with column i
// the vector value of ith mesh point.
// φ(input) is a vector of length num_features, where element i is the
// interpolation coefficient of the ith mesh point.
// Only num_interpolants of these features are non-zero in any query.
//
// If we implement more function approximators, then I'm tempted to
// call the base classes e.g. ParameterizedFunction and
// LinearlyParameterizedFunction.
//
// Note: here we have a matrix of parameters and a feature vector, when the
// more typical case of linear function approximators would use a vector of
// parameters and a feature matrix.
public:
DRAKE_DEFAULT_COPY_AND_MOVE_AND_ASSIGN(BarycentricMesh);
/// The mesh is represented by a std::set (to ensure uniqueness and provide
/// logarithmic lookups) of coordinates in each input dimension. Note: The
/// values are type double, not T (We do not plan to take gradients, etc w/
/// respect to them).
typedef std::set<double> Coordinates;
typedef std::vector<Coordinates> MeshGrid;
/// Constructs the mesh.
explicit BarycentricMesh(MeshGrid input_grid);
// Accessor methods.
const MeshGrid& get_input_grid() const { return input_grid_; }
int get_input_size() const { return input_grid_.size(); }
int get_num_mesh_points() const {
int num_mesh_points = 1;
for (const auto& coords : input_grid_) {
num_mesh_points *= coords.size();
}
return num_mesh_points;
}
int get_num_interpolants() const { return num_interpolants_; }
/// Writes the position of a mesh point in the input space referenced by its
/// scalar index to @p point.
/// @param index must be in [0, get_num_mesh_points).
/// @param point is set to the num_inputs-by-1 location of the mesh point.
void get_mesh_point(int index, EigenPtr<Eigen::VectorXd> point) const;
/// Returns the position of a mesh point in the input space referenced by its
/// scalar index to @p point.
/// @param index must be in [0, get_num_mesh_points).
VectorX<T> get_mesh_point(int index) const;
/// Returns a matrix with all of the mesh points, one per column.
MatrixX<T> get_all_mesh_points() const;
/// Writes the mesh indices used for interpolation to @p mesh_indices, and the
/// interpolating coefficients to @p weights. Inputs that are outside the
/// bounding box of the input_grid are interpolated as though they were
/// projected (elementwise) to the closest face of the defined mesh.
///
/// @param input must be a vector of length get_num_inputs().
/// @param mesh_indices is a pointer to a vector of length
/// get_num_interpolants().
/// @param weights is a vector of coefficients (which sum to 1) of length
/// get_num_interpolants().
void EvalBarycentricWeights(const Eigen::Ref<const VectorX<T>>& input,
EigenPtr<Eigen::VectorXi> mesh_indices,
EigenPtr<VectorX<T>> weights) const;
/// Evaluates the function at the @p input values, by interpolating between
/// the values at @p mesh_values. Inputs that are outside the
/// bounding box of the input_grid are interpolated as though they were
/// projected (elementwise) to the closest face of the defined mesh.
///
/// Note that the dimension of the output vector is completely defined by the
/// mesh_values argument. This class does not maintain any information
/// related to the size of the output.
///
/// @param mesh_values is a num_outputs by get_num_mesh_points() matrix
/// containing the points to interpolate between. The order of the columns
/// must be consistent with the mesh indices curated by this class, as exposed
/// by get_mesh_point().
/// @param input must be a vector of length get_num_inputs().
/// @param output is the interpolated vector of length num_outputs
void Eval(const Eigen::Ref<const MatrixX<T>>& mesh_values,
const Eigen::Ref<const VectorX<T>>& input,
EigenPtr<VectorX<T>> output) const;
/// Returns the function evaluated at @p input.
VectorX<T> Eval(const Eigen::Ref<const MatrixX<T>>& mesh_values,
const Eigen::Ref<const VectorX<T>>& input) const;
/// Performs Eval, but with the possibility of the values on the mesh
/// having a different scalar type than the values defining the mesh
/// (symbolic::Expression containing decision variables for an optimization
/// problem is an important example)
/// @tparam ValueT defines the scalar type of the mesh_values and the output.
/// @see Eval
template <typename ValueT = T>
void EvalWithMixedScalars(
const Eigen::Ref<const MatrixX<ValueT>>& mesh_values,
const Eigen::Ref<const VectorX<T>>& input,
EigenPtr<VectorX<ValueT>> output) const {
DRAKE_DEMAND(output != nullptr);
DRAKE_DEMAND(input.size() == get_input_size());
DRAKE_DEMAND(mesh_values.cols() == get_num_mesh_points());
Eigen::VectorXi mesh_indices(num_interpolants_);
VectorX<T> weights(num_interpolants_);
EvalBarycentricWeights(input, &mesh_indices, &weights);
*output = weights[0] * mesh_values.col(mesh_indices[0]);
for (int i = 1; i < num_interpolants_; i++) {
*output += weights[i] * mesh_values.col(mesh_indices[i]);
}
}
/// Returns the function evaluated at @p input.
template <typename ValueT = T>
VectorX<ValueT> EvalWithMixedScalars(
const Eigen::Ref<const MatrixX<ValueT>>& mesh_values,
const Eigen::Ref<const VectorX<T>>& input) const {
VectorX<ValueT> output(mesh_values.rows());
EvalWithMixedScalars<ValueT>(mesh_values, input, &output);
return output;
}
/// Evaluates @p vector_func at all input mesh points and extracts the mesh
/// value matrix that should be used to approximate the function with this
/// barycentric interpolation.
///
/// @code
/// MatrixXd mesh_values = bary.MeshValuesFrom(
/// [](const auto& x) { return Vector1d(std::sin(x[0])); });
/// @endcode
MatrixX<T> MeshValuesFrom(
const std::function<VectorX<T>(const Eigen::Ref<const VectorX<T>>&)>&
vector_func) const;
private:
MeshGrid input_grid_; // Specifies the location of the mesh points in
// the input space.
std::vector<int> stride_; // The number of elements to skip to arrive at the
// next value (per input dimension)
int num_interpolants_{1}; // The number of points used in any interpolation.
};
} // namespace math
} // namespace drake
extern template class ::drake::math::BarycentricMesh<double>;